Curr Opin Gastroenterol
January 2023
Purpose Of Review: Clostridioides difficile infection (CDI) is the most common cause of healthcare-associated diarrhoea in western countries, being categorized as an urgent healthcare threat. Historically, researchers have relied on the use of in vivo animal models to study CDI pathogenesis; however, differences in physiology and disease prognosis compared with humans limit their suitability to model CDI. In vitro models are increasingly being used as an alternative as they offer excellent process control, and some are able to use human ex-vivo prokaryotic and/or eukaryotic cells.
View Article and Find Full Text PDFSeawalls are important in protecting coastlines from currents, erosion, sea-level rise, and flooding. They are, however, associated with reduced biodiversity, due to their steep orientation, lack of microhabitats, and the materials used in their construction. Hence, there is considerable interest in modifying seawalls to enhance the settlement and diversity of marine organisms, as microbial biofilms play a critical role facilitating algal and invertebrate colonization.
View Article and Find Full Text PDFBackground: Polyphenylene carboxymethylene (PPCM) sodium salt is a promising multipurpose technology for prevention of both sexually transmitted infections (STIs) and pregnancy. In preclinical studies, PPCM has demonstrated significant (1) antimicrobial activity against several important viral and bacterial pathogens and (2) contraceptive activity associated with premature acrosome loss.
Objective: To further evaluate a vaginal antimicrobial compound as a contraceptive agent in preclinical studies utilizing a repurposed hyaluronan binding assay (HBA).
In the current emerging trend of using human mesenchymal stromal cell (MSCs) for cell therapy, large quantities of cells are needed for clinical testing. Current methods of culturing cells, using tissue culture flasks or cell multilayer vessels, are proving to be ineffective in terms of cost, space and manpower. Therefore, alternatives such as large-scale industrialized production of MSCs in stirred tank bioreactors using microcarriers (MCs) are needed.
View Article and Find Full Text PDFA bilayer swellable drug-eluting ureteric stent (BSDEUS) is engineered and implemented, as a sustained drug delivery platform technology that enhances localized drug delivery to the highly impermeable urothelium, for the treatment of urothelial diseases such as strictures and carcinomas. On deployment, the device swells to co-apt with the ureteric wall and ensure drug availability to these tissues. BSDEUS consists of a stent spray-coated with a polymeric drug containing polylactic acid-co-caprolactone (PLC) layer which is overlaid by a swellable polyethylene glycol diacrylate (PEGDA) based hydrogel.
View Article and Find Full Text PDFBackground Context: Interbody spinal fusion relies on the use of external fixation and the placement of a fusion cage filled with graft materials (scaffolds) without regard for their mechanical performance. Stability at the fusion site is instead reliant on fixation hardware combined with a selected cage. Ideally, scaffolds placed into the cage should both support the formation of new bone and contribute to the mechanical stability at the fusion site.
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
July 2018
Functionalizing medical devices with polypeptides to enhance their performance has become important for improved clinical success. The extracellular matrix (ECM) adhesion protein vitronectin (VN) is an effective coating, although the chemistry used to attach VN often reduces its bioactivity. In vivo, VN binds the ECM in a sequence-dependent manner with heparan sulfate (HS) glycosaminoglycans.
View Article and Find Full Text PDFPolymeric microspheres may serve as microcarrier (MC) matrices, for the expansion of anchorage-dependent stem cells. They require surface properties that promote both initial cell adhesion and the subsequent spreading of cells, which is a prerequisite for successful expansion. When implemented in a three-dimensional culture environment, under agitation, their suspension under low shear rates depends on the MCs having a modest negative buoyancy, with a density of 1.
View Article and Find Full Text PDFLarge numbers of human mesenchymal stromal cells (MSCs) used for a variety of applications in tissue engineering and cell therapy can be generated by scalable expansion in a bioreactor using microcarriers (MCs) systems. However, the enzymatic digestion process needed to detach cells from the growth surface can affect cell viability and potentially the potency and differentiation efficiency. Thus, the main aim of our study was to develop biocompatible and biodegradable MCs that can support high MSC yields while maintaining their differentiation capability and potency.
View Article and Find Full Text PDFBackground Aims: Human mesenchymal stromal cells or marrow stromal cells (MSCs) are of great interest for bone healing due to their multi-potency and trophic effects. However, traditional MSC expansion methods using 2-dimensional monolayer (MNL) flasks or cell stacks are limited by labor-intensive handling, lack of scalability, the need for enzymatic cell harvesting and the need for attachment to a scaffold before in vivo delivery. Here, we present a biodegradable microcarrier and MSC bioprocessing system that may overcome the abovementioned challenges.
View Article and Find Full Text PDFWe describe the preparation, characterization and evaluation of a biodegradable radiopaque water-triggered shape memory embolization plug for temporary vascular occlusion. The shape memory occluding device consists of a composite of a radio-opaque filler and a poly (dl-lactide-co-glycolide) (PLGA) blend, which was coated with a crosslinked poly (ethylene glycol) diacrylate (PEGDA) hydrogel. The mechanical properties, the degradation timeframe, the effect of programming conditions on the shape memory behaviour and the extent of radio-opacity for imaging were evaluated.
View Article and Find Full Text PDFThe generation of liquefied poly-ɛ-caprolactone (PCL) droplets by means of a microfluidic device results in uniform-sized microspheres, which are validated as microcarriers for human embryonic stem cell culture. Formed droplet size and size distribution, as well as the resulting PCL microsphere size, are correlated with the viscosity and flow rate ratio of the dispersed (Q d) and continuous (Q c) phases. PCL in dichloromethane increases its viscosity with concentration and molecular weight.
View Article and Find Full Text PDFHuman pluripotent stem cells (hPSC) are self-renewing cells having the potential of differentiation into the three lineages of somatic cells and thus can be medically used in diverse cellular therapies. One of the requirements for achieving these clinical applications is development of completely defined xeno-free systems for large-scale cell expansion and differentiation. Previously, we demonstrated that microcarriers (MCs) coated with mouse laminin-111 (LN111) and positively charged poly-l-lysine (PLL) critically enable the formation and evolution of cells/MC aggregates with high cell yields obtained under agitated conditions.
View Article and Find Full Text PDFIntroduction: Myocardial infarction is accompanied by a significant loss of cardiomyocytes (CMs). Functional CMs, differentiated from human embryonic stem cells (hESCs), offer a potentially unlimited cell source for cardiac disease therapies and regenerative cardiovascular medicine. However, conventional production methods on monolayer culture surfaces cannot adequately supply the large numbers of cells required for such treatments.
View Article and Find Full Text PDFThe expansion of human pluripotent stem cells (hPSC) for biomedical applications generally compels a defined, reliable, and scalable platform. Bioreactors offer a three-dimensional culture environment that relies on the implementation of microcarriers (MC), as supports for cell anchorage and their subsequent growth. Polystyrene microspheres/MC coated with adhesion-promoting extracellular matrix (ECM) protein, vitronectin (VN), or laminin (LN) have been shown to support hPSC expansion in a static environment.
View Article and Find Full Text PDFA novel configuration, consisting of two apposing surfaces bounding a vertical water column, is presented and evaluated for settlement assays using cyprids of Balanus amphitrite. Assays were conducted on planar surfaces, ranging from hydrophobic polystyrene to hydrophilic glass and including CH(3)- and NH(3) (+)-terminated self-assembled monolayers (SAMs). Identical apposing surfaces generated settlement rates comparable to those obtained in prior studies, while a choice assay yielded consistent results, with individual replicates each indicating the preferred surface for settlement.
View Article and Find Full Text PDFRecent interest in the use of human hair keratins as a biomaterial has grown, fuelled by improvements in keratin extraction methods and better understanding of keratin bioactivity. The use of keratins as a bioactive coating for in vitro cell culture studies is an attractive proposition. In this light, the surface adsorption of human hair keratins onto tissue culture polystyrene surfaces has been investigated.
View Article and Find Full Text PDFHuman pluripotent stem cells (hPSCs) are a promising cell source for tissue engineering and regenerative medicine, especially in the field of neurobiology. Neural differentiation protocols have been developed to differentiate hPSCs into specific neural cells, but these predominantly rely on biochemical cues. Recently, differentiation protocols have incorporated topographical cues to increase the total neuronal yield.
View Article and Find Full Text PDFWhile defining the environment for human embryonic stem cell (hESC) culture on 2-dimensional (2D) surfaces has made rapid progress, the industrial-scale implementation of this technology will benefit from translating this knowledge into a 3-dimensional (3D) system, thus enabling better control, automation, and volumetric scale-up in bioreactors. The current study describes a system with defined conditions that are capable of supporting the long-term 2D culture of hESCs and the transposing of these conditions to 3D microcarrier (MC) cultures. Vitronectin (VN) and laminin (LN) were chosen as matrices for the long-term propagation of hESCs in a defined culture medium (STEMPRO(®)) for conventional 2D culture.
View Article and Find Full Text PDFMicrotopography is one of several strategies used by marine organisms to inhibit colonization by fouling organisms. While replicates of natural microtextures discourage settlement, details of larval interactions with the structured surfaces remain scarce. Close-range microscopy was used to quantify the exploration of cyprids of Amphibalanus amphitrite on cylindrical micropillars with heights of 5 and 30 μm and diameters ranging from 5 to 100 μm.
View Article and Find Full Text PDFSettlement inhibition of barnacle (Amphibalanus amphitrite) cypris larvae resulting from exposure to ultrasound was measured at three frequencies (23, 63, and 102 kHz), applied at three acoustic pressure levels (9, 15, and 22 kPa) for exposure times of 30, 150, and 300 s. The lowest settlement was observed for 23 kHz, which also induced the highest cyprid mortality. Cyprid settlement following exposure to 23 kHz at 22 kPa for 30 s was reduced by a factor of two.
View Article and Find Full Text PDFThe standard method for culturing human embryonic stem cells (hESC) uses supporting feeder layers of cells or an undefined substrate, Matrigel(™), which is a basement membrane extracted from murine sarcoma. For stem cell therapeutic applications, a superior alternative would be a defined, artificial surface that is based on immobilized human plasma vitronectin (VN), which is an adhesion-mediating protein. Therefore, VN adsorbed to diverse polymer surfaces was explored for the continuous propagation of hESC.
View Article and Find Full Text PDFTissue Eng Part C Methods
February 2011
The spatial control of cells on a surface and the patterning of multiple cell types is an important tool for fundamental biological research and tissue engineering applications. A novel technique is described for the controlled seeding of multiple cell types at specific locations on a surface without requiring the use of specialized equipment or materials. Small-volume, quasi-hemispherical drops of cell solution are deposited onto a cell culture surface immersed under barrier oil, which serves to contain the drop and prevents evaporation of the cell culture medium during the time necessary for cells to attach to the cell culture surface.
View Article and Find Full Text PDF