Two conducting quantum systems coupled only via interactions can exhibit the phenomenon of Coulomb drag, in which a current passed through one layer can pull a current along in the other. However, in systems with particle-hole symmetry-for instance, the half filled Hubbard model or graphene near the Dirac point-the Coulomb drag effect vanishes to leading order in the interaction. Its thermal analog, whereby a thermal current in one layer pulls a thermal current in the other, does not vanish and is indeed the dominant form of drag in particle-hole symmetric systems.
View Article and Find Full Text PDFWe show that the dynamics of a quantum impurity subject to a stochastic drive on one side and coupled to a quantum critical system on the other display a universal behavior inherited from the quantum critical scaling. Using boundary conformal field theory, we formulate a generic ansatz for the dynamical scaling form of the typical Loschmidt echo and corroborate it with exact numerical calculations in the case of a spin impurity driven by shot noise in a quantum Ising chain. We find that due to rare events the dynamics of the mean echo can follow very different dynamical scaling than the typical echo for certain classes of drives.
View Article and Find Full Text PDFWe study transitions between distinct phases of one-dimensional periodically driven (Floquet) systems. We argue that these are generically controlled by infinite-randomness fixed points of a strong-disorder renormalization group procedure. Working in the fermionic representation of the prototypical Floquet Ising chain, we leverage infinite randomness physics to provide a simple description of Floquet (multi)criticality in terms of a distinct type of domain wall associated with time translational symmetry-breaking and the formation of "Floquet time crystals.
View Article and Find Full Text PDFA quantum critical system described at low energy by a conformal field theory (CFT) and subjected to a time-periodic boundary drive displays multiple dynamical regimes, depending on the drive frequency. We compute the behavior of quantities including the entanglement entropy and Loschmidt echo, confirming analytic predictions from field theory by exact numerics on the transverse field Ising model and demonstrate universality by adding nonintegrable perturbations. The dynamics naturally separate into three regimes: a slow-driving limit, which has an interpretation as multiple quantum quenches with amplitude corrections from CFT; a fast-driving limit, in which the system behaves as though subject to a single quantum quench; and a crossover regime displaying heating.
View Article and Find Full Text PDF