Publications by authors named "William Bachalo"

The SAE International has published Aerospace Information Report (AIR) 6241 which outlined the design and operation of a standardized measurement system for measuring non-volatile particulate matter (nvPM) mass and number emissions from commercial aircraft engines. Prior to this research, evaluation of this system by various investigators revealed differences in nvPM mass emissions measurement on the order of 15-30% both within a single sampling system and between two systems operating in parallel and measuring nvPM mass emissions from the same source. To investigate this issue, the U.

View Article and Find Full Text PDF

Presented here is an overview of non-volatile particulate matter (nvPM) emissions, i.e. "soot" as assessed by TEM analyses of samples collected after the exhaust of a J-85 turbojet fueled with Jet-A as well as with blends of Jet-A and Camelina biofuel.

View Article and Find Full Text PDF

The project SAMPLE evaluated methods for measuring particle properties in the exhaust of aircraft engines with respect to the development of standardized operation procedures for particulate matter measurement in aviation industry. Filter-based off-line mass methods included gravimetry and chemical analysis of carbonaceous species by combustion methods. Online mass methods were based on light absorption measurement or used size distribution measurements obtained from an electrical mobility analyzer approach.

View Article and Find Full Text PDF

There is considerable interest in portable emissions measurement systems (PEMS) for emission inventory and regulatory applications. For this study, four commercial PEMS were compared with a Federal Reference Method (FRM) for measuring emissions from a back-up generator (BUG) over steady-state loads and a diesel truck on transient and steady-state chassis dynamometer tests. The agreement between the PEMS and the FRM varied depending on the pollutant and the particular PEMS tested for both the BUG and chassis dynamometer testing.

View Article and Find Full Text PDF

Laser-induced incandescence (LII) has proved to be a useful diagnostic tool for spatially and temporally resolved measurement of particulate (soot) volume fraction and primary particle size in a wide range of applications, such as steady flames, flickering flames, and Diesel engine exhausts. We present a novel LII technique for the determination of soot volume fraction by measuring the absolute incandescence intensity, avoiding the need for ex situ calibration that typically uses a source of particles with known soot volume fraction. The technique developed in this study further extends the capabilities of existing LII for making practical quantitative measurements of soot.

View Article and Find Full Text PDF