Publications by authors named "William B Zimmerman"

Article Synopsis
  • Candidemia is a major concern in critically ill patients, significantly affecting their morbidity and mortality, and is linked to various risk factors.
  • A retrospective study of 91 non-neutropenic critically ill adults examined the relationship between antifungal therapy effectiveness and patient outcomes, finding that improper or delayed treatment increased mortality rates.
  • Key risk factors for higher mortality included mechanical ventilation, vasopressor therapy, end-stage renal disease, and multiple organ failures; patients receiving inadequate antifungal therapy had a much higher mortality rate (64%) compared to those receiving appropriate treatment (29%).
View Article and Find Full Text PDF

Introduction: Hypercalcemia in critically ill patients is associated with an increased severity of illness and mortality that becomes worse as the levels rise. Pamidronate was evaluated for the treatment of hypercalcemia in critically ill surgical patients.

Methods: This retrospective study evaluated 30 critically ill surgical patients who developed hypercalcemia (ionized calcium (iCa)≥1.

View Article and Find Full Text PDF

As an alternative to fossil fuels, biodiesel can be a source of clean and environmentally friendly energy source. However, its commercial application is limited by expensive feedstock and the slow nature of the pretreatment step-acid catalysis. The conventional approach to carry out this reaction uses stirred tank reactors.

View Article and Find Full Text PDF

Waste resources are an attractive option for economical the production of biodiesel; however, oil derived from waste resource contains free fatty acids (FFA). The concentration of FFAs must be reduced to below 1 wt.% before it can be converted to biodiesel using transesterification.

View Article and Find Full Text PDF

Product inhibition is a barrier to many fermentation processes, including bioethanol production, and is responsible for dilute product streams which are energy intensive to purify. The main purpose of this study was to investigate whether hot microbubble stripping could be used to remove ethanol continuously from dilute ethanol-water mixtures expected in a bioreactor and maintain ethanol concentrations below the inhibitory levels for the thermophile (TM242), that can utilize a range of sugars derived from lignocellulosic biomass. A custom-made microbubble stripping unit that produces clouds of hot microbubbles (~120 °C) by fluidic oscillation was used to remove ethanol from ~2% (v/v) ethanol-water mixtures maintained at 60 °C.

View Article and Find Full Text PDF

Background: Industrial biotechnology will play an increasing role in creating a more sustainable global economy. For conventional aerobic bioprocesses supplying O can account for 15% of total production costs. Microbubbles (MBs) are micron-sized bubbles that are widely used in industry and medical imaging.

View Article and Find Full Text PDF

There has been a steady rise in the incidences of algal blooms globally, and worryingly, there is increasing evidence that changes in the global climate are leading to a shift toward cyanobacterial blooms. Many cyanobacterial genera are harmful, producing several potent toxins, including microcystins, for which there are over 90 described analogues. There are a wide range of negative effects associated with these toxins including gastroenteritis, cytotoxicity, hepatotoxicity and neurotoxicity.

View Article and Find Full Text PDF

The production and utilization of microbubbles are rapidly becoming of major importance in a number of global applications, from biofuel production to medical imaging contrast agents. Many aspects of bubble formation have been studied, with diffuser characteristics (such as pore size, pore orientation) and gas flow rate all being shown to influence the bubble formation process. However, very little attention has been paid to the influence of surface wettability of the diffuser and the detailed role it plays at the triple interface of gas-liquid-diffuser.

View Article and Find Full Text PDF

A novel design for a cascade dielectric barrier discharge (DBD) atomizer was applied for treating samples of water containing biological and organic contaminants. Several experimental investigations were conducted on artificial samples and real sample (digested sludge collected from a wastewater treatment plant, WWTP). The artificial water samples were prepared by using different concentrations of E.

View Article and Find Full Text PDF
Article Synopsis
  • A new CO2 dosing strategy for D. salina batch cultures was developed, focusing on timing and intervals for optimum chlorophyll yield.
  • In trials, a 5% CO2/95% N2 mix was periodically introduced at two different flow rates, with specific dosing times calculated for each rate.
  • Results showed that periodic dosing maintained a stable pH for algae growth and improved CO2 capture efficiency significantly compared to continuous dosing, suggesting a more cost-effective method.
View Article and Find Full Text PDF

Aeration is one of the most energy intensive processes in the waste water treatment plants and any improvement in it is likely to enhance the overall efficiency of the overall process. In the current study, a fluidic oscillator has been used to produce microbubbles in the order of 100 μm in diameter by oscillating the inlet gas stream to a pair of membrane diffusers. Volumetric mass transfer coefficient was measured for steady state flow and oscillatory flow in the range of 40-100l/min.

View Article and Find Full Text PDF

In this study, we present a model whereby a fragmentation of arsenic hydride in a rectangular dielectric barrier discharge (DBD) atomizer is investigated. The aim is to elucidate the distribution of the intermediates species and generated free analyte atoms along atomizer channel, which is required to decide the optimal position for spectrometric data acquisition. Simulation results indicate that formation of intermediate species and free arsenic atoms is initiated in the first section of atomization channel before reaching the section between the electrodes.

View Article and Find Full Text PDF

The performance of microflotation, dispersed air flotation with microbubble clouds with bubble size about 50 µm, for algae separation using fluidic oscillation for microbubble generation is investigated. This fluidic oscillator converts continuous air supply into oscillatory flow with a regular frequency to generate bubbles of the scale of the exit pore. Bubble characterization results showed that average bubble size generated under oscillatory air flow state was 86 µm, approximately twice the size of the diffuser pore size of 38 µm.

View Article and Find Full Text PDF

In this work, an optimization study was conducted to investigate the performance of a custom-designed miniaturized dielectric barrier discharge (DBD) microplasma chip to be utilized as a radiation source for mercury determination in water samples. The experimental work was implemented by using experimental design, and the results were assessed by applying statistical techniques. The proposed DBD chip was designed and fabricated in a simple way by using a few microscope glass slides aligned together and held by a Perspex chip holder, which proved useful for miniaturization purposes.

View Article and Find Full Text PDF

The drag on a permeable particle traversing through a Newtonian liquid is calculated. This is in terms of a single dimensionless group, Da, the Darcy number, which relates the particle permeability to the radius. For small values of the Darcy number the solution reverts to the well-known Stokes drag for smooth hard particles.

View Article and Find Full Text PDF

The hypothesis that frequency and amplitude response can be used in a complicated metabolic pathway kinetics model for optimal parameter estimation, as speculated by its successful prior usage for a mechanical oscillator and a heterogeneous chemical system, is tested here. Given the complexity of the glycolysis model of yeast chosen, this question is limited to three kinetics parameters of the 87 in the in vitro model developed in the literature. The direct application of the approach, used with the uninformed selection of operating conditions for the oscillation of external glucose concentration, led to miring the data assimilation process in local minima.

View Article and Find Full Text PDF

The purpose of this paper was to evaluate the safety and technical success of TrapEase inferior vena cava filter placement via the subclavian vein. As of yet, no reports in the literature have specifically investigated the use of the subclavian vein as a route for deploying TrapEase vena cava filters. Retrospective chart review was conducted of 135 patients with attempted TrapEase inferior vena cava filter placement over a 2-year period.

View Article and Find Full Text PDF

The presence of surfactants in dried latex films can adversely affect the adhesive, water-resistant, and gloss properties, so investigating the surfactant distribution in latex coatings is of prime industrial relevance. Here we present a model that predicts the distribution of surfactant in a latex coating during the solvent evaporation stage. The conservation equation for surfactant during solvent evaporation is solved in the limit of infinite particle Peclet numbers, a dimensionless quantity giving the measure of relative magnitudes of evaporative to diffusive fluxes.

View Article and Find Full Text PDF