Publications by authors named "William B Rolland"

Accounting for high mortality and morbidity rates, intracerebral hemorrhage (ICH) remains one of the most detrimental stroke subtypes lacking a specific therapy. Neuroinflammation contributes to ICH-induced brain injury and is associated with unfavorable outcomes. This study aimed to evaluate whether 7 nicotinic acetylcholine receptor (7nAChR) stimulation ameliorates neuroinflammation after ICH.

View Article and Find Full Text PDF

We aim to determine if direct thrombin inhibition by dabigatran will improve long-term brain morphological and neurofunctional outcomes and if potential therapeutic effects are dependent upon reduced PAR-1 stimulation and consequent mTOR activation. Germinal matrix haemorrhage was induced by stereotaxically injecting 0.3 U type VII-S collagenase into the germinal matrix of P7 rat pups.

View Article and Find Full Text PDF

Fingolimod, a sphingosine-1-phosphate receptor (S1PR) agonist, is clinically available to treat multiple sclerosis and is showing promise in treating stroke. We investigated if fingolimod provides long-term protection from experimental neonatal germinal matrix hemorrhage (GMH), aiming to support a potential mechanism of acute fingolimod-induced protection. GMH was induced in P7 rats by infusion of collagenase (0.

View Article and Find Full Text PDF

Germinal matrix hemorrhage remains the leading cause of morbidity and mortality in preterm infants in the United States with little progress made in its clinical management. Survivors are often afflicted with long-term neurological sequelae, including cerebral palsy, mental retardation, hydrocephalus, and psychiatric disorders. Blood clots disrupting normal cerebrospinal fluid circulation and absorption after germinal matrix hemorrhage are thought to be important contributors towards post-hemorrhagic hydrocephalus development.

View Article and Find Full Text PDF

Germinal matrix hemorrhage (GMH) is the most common cause of neurological complications of prematurity and has lasting implications. PAR-1 and PAR-4 receptors are involved with upstream signaling pathways following brain hemorrhage in adult models of stroke, of which the mammalian target of rapamycin (mTOR) is a potential downstream mediator. Therefore, we hypothesized a role for PAR-1, -4/ mTOR signaling following GMH brain injury.

View Article and Find Full Text PDF

Germinal matrix hemorrhage (GMH) is the most devastating neurological problem of premature infants. Current treatment strategies are ineffective and brain injury is unpreventable. Insulin-like growth factor 1 (IGF-1) is an endogenous protein shown to have multiple neuroprotective properties.

View Article and Find Full Text PDF

Germinal matrix hemorrhage (GMH) is a major cause of brain damage in prematurity and has long-lasting neurological implications. The development of brain inflammation contributes to brain injury, leading to a lifetime of neurologic deficits. PAR-1 and 4 receptors are involved with inflammatory pathways after brain hemorrhage in adult models of stroke, of which cyclooxygenase-2 (COX-2) is a potential mediator.

View Article and Find Full Text PDF

Germinal matrix hemorrhage (GMH) is the most common and devastating neurological injury of premature infants, and current treatment approaches are ineffective. Remote ischemic postconditioning (RIPC) is a method by which brief limb ischemic stimuli protect the injured brain. We hypothesized that RIPC can improve outcomes following GMH in rats.

View Article and Find Full Text PDF

Background And Purpose: This study examines the role of thrombin's protease-activated receptor (PAR)-1, PAR-4 in mediating cyclooxygenase-2 and mammalian target of rapamycin after germinal matrix hemorrhage.

Methods: Germinal matrix hemorrhage was induced by intraparenchymal infusion of bacterial collagenase into the right ganglionic eminence of P7 rat pups. Animals were treated with PAR-1, PAR-4, cyclooxygenase-2, or mammalian target of rapamycin inhibitors by 1 hour, and ≤5 days.

View Article and Find Full Text PDF

Neonatal brain hemorrhage (NBH) of prematurity is an unfortunate consequence of preterm birth. Complications result in shunt dependence and long-term structural changes such as posthemorrhagic hydrocephalus, periventricular leukomalacia, gliosis, and neurological dysfunction. Several animal models are available to study this condition, and many basic mechanisms, etiological factors, and outcome consequences, are becoming understood.

View Article and Find Full Text PDF

Early brain injury (EBI), following subarachnoid hemorrhage (SAH), comprises blood-brain barrier (BBB) disruption and consequent edema formation. Peripheral leukocytes can infiltrate the injured brain, thereby aggravating BBB leakage and neuroinflammation. Thus, anti-inflammatory pharmacotherapies may ameliorate EBI and provide neuroprotection after SAH.

View Article and Find Full Text PDF

Formation of brain edema after intracerebral hemorrhage (ICH) is highly associated with its poor outcome. However, the relationship between cerebral edema and behavioral deficits has not been thoroughly examined in the preclinical setting. Hence, this study aimed to evaluate the ability of common sensorimotor tests to predict the extent of brain edema in two mouse models of ICH.

View Article and Find Full Text PDF

Background And Purpose: This study investigated whether isoflurane ameliorates neurological sequelae after germinal matrix hemorrhage (GMH) through activation of the cytoprotective sphingosine kinase/sphingosine-1-phosphate receptor/Akt pathway.

Methods: GMH was induced in P7 rat pups by intraparenchymal infusion of bacterial collagenase (0.3 U) into the right hemispheric germinal matrix.

View Article and Find Full Text PDF

Subarachnoid hemorrhage (SAH), predominantly caused by a ruptured aneurysm, is a devastating neurological disease that has a morbidity and mortality rate higher than 50%. Most of the traditional in vivo research has focused on the pathophysiological or morphological changes of large-arteries after intracisternal blood injection. This was due to a widely held assumption that delayed vasospasm following SAH was the major cause of delayed cerebral ischemia and poor outcome.

View Article and Find Full Text PDF

Background And Purpose: Blood-brain barrier disruption and consequent vasogenic edema formation codetermine the clinical course of intracerebral hemorrhage (ICH). This study examined the effect of PHA-543613, a novel α7 nicotinic acetylcholine receptor agonist, on blood-brain barrier preservation after ICH.

Methods: Male CD-1 mice, subjected to intrastriatal blood infusion, received PHA-543613 alone or in combination with α7 nicotinic acetylcholine receptor antagonist methyllycaconitine or phosphatidylinositol 3-kinase inhibitor wortmannin.

View Article and Find Full Text PDF

T-lymphocytes promote cerebral inflammation, thus aggravating neuronal injury after stroke. Fingolimod, a sphingosine 1-phosphate receptor analog, prevents the egress of lymphocytes from primary and secondary lymphoid organs. Based on these findings, we hypothesized fingolimod treatment would reduce the number of T-lymphocytes migrating into the brain, thereby ameliorating cerebral inflammation following experimental intracerebral hemorrhage (ICH).

View Article and Find Full Text PDF

Treatments that could extend the therapeutic window of opportunity for stroke patients are urgently needed. Early administration of hyperbaric oxygen therapy (HBOT) has been proven neuroprotective in the middle cerebral artery occlusion (MCAo) in rodents. Our aim was to determine: 1) whether delayed HBOT after permanent MCAo (pMCAo) can still convey neuroprotection and restorative cell proliferation, and 2) whether these beneficial effects rely on HBO-induced activation of protein phosphatase-1γ (PP1-γ) leading to a decreased phosphorylation and ubiquitination of CREB and hence its stabilization.

View Article and Find Full Text PDF

Spontaneous intracerebral hemorrhage (ICH) defines a potentially life-threatening neurological malady that accounts for 10-15% of all stroke-related hospitalizations and for which no effective treatments are available to date(1,2). Because of the heterogeneity of ICH in humans, various preclinical models are needed to thoroughly explore prospective therapeutic strategies(3). Experimental ICH is commonly induced in rodents by intraparenchymal injection of either autologous blood or bacterial collagenase(4).

View Article and Find Full Text PDF

Animal models of stroke contribute to the development of better stroke prevention and treatment through studies investigating the pathophysiology of different stroke subtypes and by testing promising treatments before trials in humans. There are two broad types of animal models: those in which stroke is induced through artificial means, modeling the consequences of a vascular insult but not the vascular pathology itself; and those in which strokes occur spontaneously. Most animal models of stroke are in rodents due to cost, ethical considerations, availability of standardized neurobehavioral assessments, and ease of physiological monitoring.

View Article and Find Full Text PDF

Fibroblast growth factors (FGFs) maintain and promote vascular integrity; however whether FGFs protect the blood-brain barrier (BBB) after intracerebral hemorrhage (ICH) remains unexplored. In this present study, we hypothesized that exogenous FGF administration attenuates brain injury after ICH, specifically by preserving endothelial adherens junctions, therefore reducing vasogenic brain edema and attenuating neurofunctional deficits in mice subjected to experimental ICH. Acid fibroblast growth factor (FGF1) or basic fibroblast growth factor (FGF2) was administered intracerebroventricularly (ICV) at 0.

View Article and Find Full Text PDF

Background And Purpose: Perihematomal edema formation and consequent cell death contribute to the delayed brain injury evoked by intracerebral hemorrhage (ICH). We aimed to evaluate the effect of α7 nicotinic acetylcholine receptor (α7nAChR) stimulation on behavior, brain edema, and neuronal apoptosis. Furthermore, we aimed to determine the role of the proapoptotic glycogen synthase kinase-3β (GSK-3β) after experimental ICH.

View Article and Find Full Text PDF

Background And Purpose: Erythropoietin (EPO) has been demonstrated to possess significant neuroprotective effects in stroke. We determined if the nano-drug form of human recombinant EPO (PLGA-EPO nanoparticles [PLGA-EPO-NP]) can enhance neuroprotection at lower dosages versus human recombinant EPO (r-EPO).

Methods: Established neonatal rat model of unilateral ischemic stroke was used to compare r-EPO, PLGA-EPO-NP and phosphate-buffered saline, given by daily intraperitoneal injections, followed by infarction volume and Rotarod Performance Test assessment.

View Article and Find Full Text PDF

Background And Purpose: Early brain injury is an important pathological process after subarachnoid hemorrhage (SAH). The goal of this study was to evaluate whether the α7 nicotinic acetylcholine receptor (α7nAChR) agonist PNU-282987 attenuates early brain injury after SAH and whether α7nAChR stimulation is associated with down-regulation of caspase activity via phosphatidylinositol 3-kinase-Akt signaling.

Methods: The perforation model of SAH was performed, and neurological score, body weight loss, and brain water content were evaluated 24 and 72 hours after surgery.

View Article and Find Full Text PDF

Intracerebral hemorrhage (ICH) accounts for 20% of all strokes and is the most devastating form across all stroke types. Lymphocytes have been shown to potentiate cerebral inflammation and brain injury after stroke. FTY720 (Fingolimod) is an immune-modulating drug that prevents the egress of peripheral lymphocytes from peripheral stores.

View Article and Find Full Text PDF