Protecting the future of forests in the United States and other countries depends in part on our ability to monitor and map forest health conditions in a timely fashion to facilitate management of emerging threats and disturbances over a multitude of spatial scales. Remote sensing data and technologies have contributed to our ability to meet these needs, but existing methods relying on supervised classification are often limited to specific areas by the availability of imagery or training data, as well as model transferability. Scaling up and operationalizing these methods for general broadscale monitoring and mapping may be promoted by using simple models that are easily trained and projected across space and time with widely available imagery.
View Article and Find Full Text PDFProtected areas (PAs) are essential to biodiversity conservation, but their static boundaries may undermine their potential for protecting species under climate change. We assessed how the climatic conditions within global terrestrial PAs may change over time. By 2070, protection is expected to decline in cold and warm climates and increase in cool and hot climates over a wide range of precipitation.
View Article and Find Full Text PDFClimate change is leading to widespread elevational shifts thought to increase species extinction risk in mountains. We integrate digital elevation models with a metric of human pressure to examine changes in the amount of intact land area available for species undergoing elevational range shifts in all major mountain ranges globally (n = 1010). Nearly 60% of mountainous area is under intense human pressure, predominantly at low elevations and mountain bases.
View Article and Find Full Text PDFBark beetle outbreaks in the Rocky Mountains caused substantial tree mortality starting in the late 1990s, and continued into the 2000s, with the most severe mortality occurring from 2002 to 2012. Over the same time period, concentrations of dissolved copper in the Big Thompson River (BTR), Colorado, USA, increased significantly and are high enough to negatively affect aquatic life. We examined correlations between dissolved copper and tree mortality in the BTR.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
June 2018
Protected areas (PAs) that span elevational gradients enhance protection for taxonomic and phylogenetic diversity and facilitate species range shifts under climate change. We quantified the global protection of elevational gradients by analyzing the elevational distributions of 44,155 PAs in 1,010 mountain ranges using the highest resolution digital elevation models available. We show that, on average, mountain ranges in Africa and Asia have the lowest elevational protection, ranges in Europe and South America have intermediate elevational protection, and ranges in North America and Oceania have the highest elevational protection.
View Article and Find Full Text PDFWe evaluate the world terrestrial network of protected areas (PAs) for its partnership potential in responding to climate change. That is, if a PA engaged in collaborative, trans-boundary management of species, by investing in conservation partnerships with neighboring areas, what climate change adaptation benefits might accrue? We consider core tenets of conservation biology related to protecting large areas with high environmental heterogeneity and low climate change velocity and ask how a series of biodiversity adaptation indicators change across spatial scales encompassing potential PA and non-PA partners. Less than 1% of current world terrestrial PAs equal or exceed the size of established and successful conservation partnerships.
View Article and Find Full Text PDFRefugia have long been studied from paleontological and biogeographical perspectives to understand how populations persisted during past periods of unfavorable climate. Recently, researchers have applied the idea to contemporary landscapes to identify climate change refugia, here defined as areas relatively buffered from contemporary climate change over time that enable persistence of valued physical, ecological, and socio-cultural resources. We differentiate historical and contemporary views, and characterize physical and ecological processes that create and maintain climate change refugia.
View Article and Find Full Text PDFEcological niche theory holds that species distributions are shaped by a large and complex suite of interacting factors. Species distribution models (SDMs) are increasingly used to describe species' niches and predict the effects of future environmental change, including climate change. Currently, SDMs often fail to capture the complexity of species' niches, resulting in predictions that are generally limited to climate-occupancy interactions.
View Article and Find Full Text PDFKey to understanding the implications of climate and land use change on biodiversity and natural resources is to incorporate the physiographic platform on which changes in ecological systems unfold. Here, we advance a detailed classification and high-resolution map of physiography, built by combining landforms and lithology (soil parent material) at multiple spatial scales. We used only relatively static abiotic variables (i.
View Article and Find Full Text PDFClimate change will affect not only natural and cultural resources within protected areas but also tourism and visitation patterns. The U.S.
View Article and Find Full Text PDFUS national parks are challenged by climate and other forms of broad-scale environmental change that operate beyond administrative boundaries and in some instances are occurring at especially rapid rates. Here, we evaluate the climate change exposure of 289 natural resource parks administered by the US National Park Service (NPS), and ask which are presently (past 10 to 30 years) experiencing extreme (<5th percentile or >95th percentile) climates relative to their 1901-2012 historical range of variability (HRV). We consider parks in a landscape context (including surrounding 30 km) and evaluate both mean and inter-annual variation in 25 biologically relevant climate variables related to temperature, precipitation, frost and wet day frequencies, vapor pressure, cloud cover, and seasonality.
View Article and Find Full Text PDFMany protected areas may not be adequately safeguarding biodiversity from human activities on surrounding lands and global change. The magnitude of such change agents and the sensitivity of ecosystems to these agents vary among protected areas. Thus, there is a need to assess vulnerability across networks of protected areas to determine those most at risk and to lay the basis for developing effective adaptation strategies.
View Article and Find Full Text PDFResource managers at parks and other protected areas are increasingly expected to factor climate change explicitly into their decision making frameworks. However, most protected areas are small relative to the geographic ranges of species being managed, so forecasts need to consider local adaptation and community dynamics that are correlated with climate and affect distributions inside protected area boundaries. Additionally, niche theory suggests that species' physiological capacities to respond to climate change may be underestimated when forecasts fail to consider the full breadth of climates occupied by the species rangewide.
View Article and Find Full Text PDFThe ability of species to respond to novel future climates is determined in part by their physiological capacity to tolerate climate change and the degree to which they have reached and continue to maintain distributional equilibrium with the environment. While broad-scale correlative climatic measurements of a species' niche are often described as estimating the fundamental niche, it is unclear how well these occupied portions actually approximate the fundamental niche per se, versus the fundamental niche that exists in environmental space, and what fitness values bounding the niche are necessary to maintain distributional equilibrium. Here, we investigate these questions by comparing physiological and correlative estimates of the thermal niche in the introduced North American house sparrow (Passer domesticus).
View Article and Find Full Text PDFBackground: In the mid 20th century, Ernst Mayr and Theodosius Dobzhansky championed the significance of circular overlaps or ring species as the perfect demonstration of speciation, yet in the over 50 years since, only a handful of such taxa are known. We developed a topographic model to evaluate whether the geographic barriers that favor processes leading to ring species are common or rare, and to predict where other candidate ring barriers might be found.
Results: Of the 952,147 geographic barriers identified on the planet, only about 1% are topographically similar to barriers associated with known ring taxa, with most of the likely candidates occurring in under-studied parts of the world (for example, marine environments, tropical latitudes).
Background: Reproductive isolation (RI) is widely accepted as an important "check point" in the diversification process, since it defines irreversible evolutionary trajectories. Much less consensus exists about the processes that might drive RI. Here, we employ a formal quantitative analysis of genetic interactions at several stages of divergence within the ring species complex Ensatina eschscholtzii in order to assess the relative contribution of genetic and ecological divergence for the development of RI.
View Article and Find Full Text PDFNiche theory is central to understanding how species respond geographically to climate change. It defines a species' realized niche in a biological community, its fundamental niche as determined by physiology, and its potential niche--the fundamental niche in a given environment or geographic space. However, most predictions of the effects of climate change on species' distributions are limited to correlative models of the realized niche, which assume that species are in distributional equilibrium with respect to the variables or gradients included in the model.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2009
In the face of environmental change, species can evolve new physiological tolerances to cope with altered climatic conditions or move spatially to maintain existing physiological associations with particular climates that define each species' climatic niche. When environmental change occurs over short temporal and large spatial scales, vagile species are expected to move geographically by tracking their climatic niches through time. Here, we test for evidence of niche tracking in bird species of the Sierra Nevada mountains of California, focusing on 53 species resurveyed nearly a century apart at 82 sites on four elevational transects.
View Article and Find Full Text PDFOur ability to accurately forecast species' geographical responses to climate change requires knowledge of the proximate and ultimate drivers of their distribution. Here, we consider the ecophysiological and demographic determinants of the distribution of a partial migrant, the North American field sparrow, Spizella pusilla. From 1940 to 1963, the field sparrow extended its winter northern range margin 222 km polewards.
View Article and Find Full Text PDF