The Gag protein of retroviruses is the primary driver of virus particle assembly. Particle morphologies among retroviral genera are distinct, with intriguing differences observed relative to human immunodeficiency virus type 1 (HIV-1), particularly that of human T-cell leukemia virus type 1 (HTLV-1). In contrast to HIV-1 and other retroviruses where the capsid (CA) carboxy-terminal domain (CTD) possesses the key amino acid determinants involved in driving Gag-Gag interactions, we have previously demonstrated that the amino-terminal domain (NTD) encodes the key residues crucial for Gag multimerization and immature particle production.
View Article and Find Full Text PDFAn effective human immunodeficiency virus type I (HIV-1) vaccine that robustly elicits broadly neutralizing antibodies (bnAbs) against HIV-1 envelope glycoproteins (Envs) to block viral entry is still not available. Thus, identifying triggers for elicitation of different types of anti-HIV-1 Env antibodies by vaccination could provide further guidance for immunogen design and vaccine development. Here, we studied the immune response to HIV-1 Env immunogens in rabbits.
View Article and Find Full Text PDFRetrovirus immature particle morphology consists of a membrane enclosed, pleomorphic, spherical and incomplete lattice of Gag hexamers. Previously, we demonstrated that human immunodeficiency virus type 2 (HIV-2) immature particles possess a distinct and extensive Gag lattice morphology. To better understand the nature of the continuously curved hexagonal Gag lattice, we have used the single particle cryo-electron microscopy method to determine the HIV-2 Gag lattice structure for immature virions.
View Article and Find Full Text PDFHuman immunodeficiency virus (HIV) Gag drives virus particle assembly. The capsid (CA) domain is critical for Gag multimerization mediated by protein-protein interactions. The Gag protein interaction network defines critical aspects of the retroviral lifecycle at steps such as particle assembly and maturation.
View Article and Find Full Text PDFHuman immunodeficiency virus (HIV) mutagenesis is driven by a variety of internal and external sources, including the host APOBEC3 (apolipoprotein B mRNA editing enzyme catalytic polypetide-like 3; A3) family of mutagenesis factors, which catalyze G-to-A transition mutations during virus replication. HIV-2 replication is characterized by a relative lack of G-to-A mutations, suggesting infrequent mutagenesis by A3 proteins. To date, the activity of the A3 repertoire against HIV-2 has remained largely uncharacterized, and the mutagenic activity of these proteins against HIV-2 remains to be elucidated.
View Article and Find Full Text PDFHuman immunodeficiency virus type 2 (HIV-2) accumulates fewer mutations during replication than HIV type 1 (HIV-1). Advanced studies of HIV-2 mutagenesis, however, have historically been confounded by high background error rates in traditional next-generation sequencing techniques. In this study, we describe the adaptation of the previously described maximum-depth sequencing (MDS) technique to studies of both HIV-1 and HIV-2 for the ultra-accurate characterization of viral mutagenesis.
View Article and Find Full Text PDFPeripatellar fat pads are intracapsular extrasynovial adipose cushions that accommodate the changing shape and volume of articular spaces during movement. Variations in bone geometry, passive and active stabilization mechanisms and/or functional demands may lead to peripatellar fat pad abnormalities. While peripatellar fat pads may be affected a variety of conditions such as synovial inflammation, tumor and fibrosis, a mechanical origin should also be considered.
View Article and Find Full Text PDFPatellar fractures account for approximately 1% of all skeletal fractures and may result from direct, indirect, or combined trauma. Because of the importance of patellar integrity for knee extension and the risk of associated injury to the extensor mechanism, accurate reporting and description of fracture type is paramount for appropriate management. This pictorial essay aims to review the normal anatomy of the patella, the mechanisms of injury and different types of patellar fractures, with a brief introduction to therapeutic management.
View Article and Find Full Text PDFSince the introduction of micro total analytical systems (μTASs), significant advances have been made toward development of lab-on-a-chip platforms capable of performing complex biological assays that can revolutionize public health, among other applications. However, use of these platforms in low-resource environments (e.g.
View Article and Find Full Text PDFMonkeypox virus (MPXV) infection fails to activate the host anti-viral protein, PKR, despite lacking a full-length homologue of the vaccinia virus (VACV) PKR inhibitor, E3. Since PKR can be activated by dsRNA produced during a viral infection, we have analyzed the accumulation of dsRNA in MPXV-infected cells. MPXV infection led to less accumulation of dsRNA than VACV infection.
View Article and Find Full Text PDFUnlabelled: The vaccinia virus (VACV) E3 protein has been shown to be important for blocking activation of the cellular innate immune system and allowing viral replication to occur unhindered. Mutation or deletion of E3L severely affects viral host range and pathogenesis. While the monkeypox virus (MPXV) genome encodes a homologue of the VACV E3 protein, encoded by the F3L gene, the MPXV gene is predicted to encode a protein with a truncation of 37 N-terminal amino acids.
View Article and Find Full Text PDFThe HMMER website, available at http://www.ebi.ac.
View Article and Find Full Text PDFMore and more evidence indicates that the 3D conformation of eukaryotic genomes is a critical part of genome function. However, due to the lack of accurate and reliable 3D genome structural data, this information is largely ignored and most of these studies have to use information systems that view the DNA in a linear structure. Visualizing genomes in real time 3D can give researchers more insight, but this is fraught with hardware limitations since each element contains vast amounts of information that cannot be processed on the fly.
View Article and Find Full Text PDFUnlabelled: Scapholunate advanced collapse (SLAC) is the most common cause of osteoarthritis involving the wrist. Along with clinical investigation, radiological studies play a vital role in the diagnosis of SLAC wrist. Given that the osteoarthritic changes that are seen with SLAC occur in a predictable progressive pattern, it is important to understand the pathological evolution of SLAC to be able to recognise the associated progressive imaging findings seen with this disease process.
View Article and Find Full Text PDFSesamoids and accessory ossicles seen in the foot vary widely in their prevalence and appearance. Occasionally, these bones may be associated with painful syndromes, due to various pathologies, including trauma, infection, inflammation, degeneration and others. However, symptomatic accessory and sesamoid bones are rare, and search for additional pathology should be performed.
View Article and Find Full Text PDFMol Phylogenet Evol
December 2012
Evolutionary relationships among placental mammalian orders have been controversial. Whole genome sequencing and new computational methods offer opportunities to resolve the relationships among 10 genomes belonging to the mammalian orders Primates, Rodentia, Carnivora, Perissodactyla and Artiodactyla. By application of the double cut and join distance metric, where gene order is the phylogenetic character, we computed genomic distances among the sampled mammalian genomes.
View Article and Find Full Text PDFIn the nineteenth century, smallpox ravaged through the United States and Canada. At this time, a botanical preparation, derived from the carnivorous plant Sarracenia purpurea, was proclaimed as being a successful therapy for smallpox infections. The work described characterizes the antipoxvirus activity associated with this botanical extract against vaccinia virus, monkeypox virus and variola virus, the causative agent of smallpox.
View Article and Find Full Text PDFWhile as yet there is no vaccine against HIV/AIDS, the results of the phase III Thai trial (RV144) have been encouraging and suggest that further improvements of the prime/boost vaccine combination of a poxvirus and protein are needed. With this aim, in this investigation we have generated derivatives of the candidate vaccinia virus vaccine vector NYVAC with potentially improved functions. This has been achieved by the re-incorporation into the virus genome of two host range genes, K1L and C7L, in conjunction with the removal of the immunomodulatory viral molecule B19, an antagonist of type I interferon action.
View Article and Find Full Text PDFMethanogens are a phylogenetically diverse group belonging to Euryarchaeota. Previously, phylogenetic approaches using large datasets revealed that methanogens can be grouped into two classes, "Class I" and "Class II". However, some deep relationships were not resolved.
View Article and Find Full Text PDFThe "double-cut-and-join" (DCJ) model of genome rearrangement proposed by Yancopoulos et al. uses the single DCJ operation to account for all genome rearrangement events. Given three signed permutations, the DCJ median problem is to find a fourth permutation that minimizes the sum of the pairwise DCJ distances between it and the three others.
View Article and Find Full Text PDFBackground: Using gene order as a phylogenetic character has the potential to resolve previously unresolved species relationships. This character was used to resolve the evolutionary history within the genus Prochlorococcus, a group of marine cyanobacteria.
Methodology/principal Findings: Orthologous gene sets and their genomic positions were identified from 12 species of Prochlorococcus and 1 outgroup species of Synechococcus.
J Comput Biol
October 2008
In the past decade, genome rearrangements have attracted increasing attention from both biologists and computer scientists as a new type of data for phylogenetic analysis. Methods for reconstructing phylogeny from genome rearrangements include distance-based methods, MCMC methods, and direct optimization methods. The latter, pioneered by Sankoff and extended with the software suites GRAPPA and MGR, is the most accurate approach, but is very limited due to the difficulty of its scoring procedure--it must solve multiple instances of the reversal median problem to compute the score of a given tree.
View Article and Find Full Text PDF