The coronavirus disease 2019 (COVID-19) pandemic has impacted many aspects of neuroscience research. At the 2020 Society of Neuroscience in Anesthesiology and Critical Care (SNACC) Annual Meeting, the SNACC Research Committee met virtually to discuss research challenges encountered during the COVID-19 pandemic along with possible strategies for facilitating research activities. These challenges and recommendations are included in this Consensus Statement.
View Article and Find Full Text PDFExpression of inflammatory (interleukin-6 [IL-6]) and vascular homeostatic (angiopoietin-2 [AP-2], endothelin-1 [ET-1], endocan-2 [EC-2]) biomarkers in pediatric traumatic brain injury (TBI) was examined in this prospective, observational cohort study of 28 children hospitalized with mild, moderate, and severe TBI by clinical measures (age, sex, Glasgow Coma Scale score [GCS], Injury Severity Score [ISS], and cerebral autoregulation status). Biomarker patterns suggest an inverse relationship between GCS and AP-2, GCS and IL-6, ISS and ET-1, but a direct relationship between GCS and ET-1 and ISS and AP-2. Biomarker patterns suggest an inverse relationship between AP-2 and ET-1, AP-2 and EC-2, but a direct relationship between AP-2 and IL-6, IL-6 and EC-2, and IL-6 and ET-1.
View Article and Find Full Text PDFBackground: Traumatic brain injury (TBI) is associated with reduced cerebral blood flow and impaired autoregulation after TBI, which may lead to poor outcome. Clinical evidence has implicated neurological injuries and associated neuroinflammation as causes of cardiac dysfunction. Studies on newborn pigs show an association of elevated catecholamines with a sex-dependent impairment of cerebral autoregulation after TBI.
View Article and Find Full Text PDFPediatr Crit Care Med
July 2019
Background: Traumatic brain injury (TBI) is an important contributor to morbidity and mortality. Low cerebral perfusion pressure (CPP, mean arterial pressure [MAP] minus intracranial pressure) after TBI is associated with cerebral ischemia, impaired cerebral autoregulation, and poor outcomes. Normalization of CPP and limitation of cerebral autoregulation impairment is a key therapeutic goal.
View Article and Find Full Text PDFCerebral autoregulation is impaired after traumatic brain injury (TBI), contributing to poor outcome. In the context of the neurovascular unit, cerebral autoregulation contributes to neuronal cell integrity and clinically Glasgow Coma Scale is correlated to intactness of autoregulation after TBI. Cerebral Perfusion Pressure (CPP) is often normalized by use of vasoactive agents to increase mean arterial pressure (MAP) and thereby limit impairment of cerebral autoregulation and neurological deficits.
View Article and Find Full Text PDFRecent clinical trials in traumatic brain injury (TBI) have failed to demonstrate therapeutic effects even when there appears to be good evidence for efficacy in one or more appropriate pre-clinical models. While existing animal models mimic the injury, difficulties in translating promising therapeutics are exacerbated by the lack of alignment of discrete measures of the underlying injury pathology between the animal models and human subjects. To address this mismatch, we have incorporated reverse translation of bedside experience to inform pre-clinical studies in a large animal (pig) model of TBI that mirror practical clinical assessments.
View Article and Find Full Text PDFHypotension and low cerebral perfusion pressure are associated with low cerebral blood flow, cerebral ischemia, and poor outcomes after traumatic brain injury (TBI). Cerebral autoregulation is impaired after TBI, contributing to poor outcome. In prior studies, ERK mitogen activated protein kinase (MAPK) and ET-1 had been observed to be upregulated and contribute to impairment of cerebral autoregulation and histopathology after fluid percussion brain injury (FPI).
View Article and Find Full Text PDFObjectives: To examine cerebral autoregulation in children with complex mild traumatic brain injury.
Design: Prospective observational convenience sample.
Setting: PICU at a level I trauma center.
Objective: Traumatic brain injury (TBI) is an important contributor to morbidity and mortality. Cerebral autoregulation is impaired after TBI, contributing to poor outcome. Extracellular signal-related kinase (ERK) mitogen activated protein kinase (MAPK) and ET-1 are upregulated and contribute to impairment of cerebral autoregulation and histopathology after porcine fluid percussion brain injury (FPI).
View Article and Find Full Text PDFTraumatic brain injury (TBI) contributes to morbidity in children, and boys are disproportionately represented. Cerebral blood flow (CBF) is reduced and autoregulation is impaired after TBI, contributing to poor outcome. Cerebral perfusion pressure (CPP) is often normalized by use of vasoactive agents to increase mean arterial pressure (MAP).
View Article and Find Full Text PDFDrug delivery by nanocarriers (NCs) has long been stymied by dominant liver uptake and limited target organ deposition, even when NCs are targeted using affinity moieties. Here we report a universal solution: red blood cell (RBC)-hitchhiking (RH), in which NCs adsorbed onto the RBCs transfer from RBCs to the first organ downstream of the intravascular injection. RH improves delivery for a wide range of NCs and even viral vectors.
View Article and Find Full Text PDFDespite the large number of promising neuroprotective agents identified in experimental traumatic brain injury (TBI) studies, none has yet shown meaningful improvements in long-term outcome in clinical trials. To develop recommendations and guidelines for pre-clinical testing of pharmacological or biological therapies for TBI, the Moody Project for Translational Traumatic Brain Injury Research hosted a symposium attended by investigators with extensive experience in pre-clinical TBI testing. The symposium participants discussed issues related to pre-clinical TBI testing including experimental models, therapy and outcome selection, study design, data analysis, and dissemination.
View Article and Find Full Text PDFThe sole FDA-approved drug treatment for ischemic stroke is tissue-type plasminogen activator (tPA). However, upregulation of JNK mitogen-activated protein kinase (MAPK) and endothelin 1 (ET-1) by tPA after stroke contributes to impaired cerebrovascular autoregulation. Wild-type (wt) tPA can bind to the lipoprotein-related receptor (LRP), which mediates vasodilation, or NMDA receptors (NMDA-Rs), exacerbating vasoconstriction.
View Article and Find Full Text PDFObjective: To examine early cerebral haemodynamic changes among youth hospitalized with sports-related traumatic brain injury (TBI).
Study Design: Youth 0-18 years admitted to a level one trauma centre with sports-related TBI were enrolled. Daily measures included clinical symptoms and Glasgow Coma Scale (GCS) score.
Tissue-type plasminogen activator (tPA) is neurotoxic and exacerbates uncoupling of cerebral blood flow (CBF) and metabolism after stroke, yet it remains the sole FDA-approved drug for treatment of ischemic stroke. Upregulation of c-Jun-terminal kinase (JNK) after stroke contributes to tPA-mediated impairment of autoregulation, but the role of endothelin-1 (ET-1) is unknown. Based on the Glasgow Coma Scale, impaired autoregulation is linked to adverse outcomes after TBI, but correlation with hippocampal histopathology after stroke has not been established.
View Article and Find Full Text PDFTraumatic brain injury (TBI) contributes to morbidity in children, and more boys experience TBI. Cerebral autoregulation is impaired after TBI, contributing to poor outcome. Cerebral Perfusion Pressure (CPP) is often normalized by use of vasoactive agents to increase mean arterial pressure (MAP).
View Article and Find Full Text PDFTraumatic brain injury (TBI) is the leading cause of injury-related death in children, with boys and children under 4 years having particularly poor outcomes. Activation of ATP- and calcium-sensitive (K and K ) channels produces cerebrovasodilation and contributes to autoregulation, both of which are impaired after TBI, contributing to poor outcomes. Upregulation of the c-Jun-terminal kinase (JNK) isoform of mitogen-activated protein kinase produces K channel function impairment after CNS injury.
View Article and Find Full Text PDFBackgroundTraumatic brain injury (TBI) is the leading cause of injury-related death in children, with boys and children under 4 years of age having particularly poor outcomes. Cerebral autoregulation is often impaired after TBI, contributing to poor outcome. In prior studies on newborn pigs, phenylephrine (Phe) preferentially protected cerebral autoregulation in female but not in male subjects after TBI.
View Article and Find Full Text PDFTraumatic brain injury (TBI) is the leading cause of injury-related death in children, with boys and children <4 years of age having particularly poor outcomes. Cerebral autoregulation is often impaired after TBI, contributing to poor outcome. Cerebral perfusion pressure can be normalized by use of vasoactive agents.
View Article and Find Full Text PDF