Understanding how the ligand shell controls low-frequency electron paramagnetic resonance (EPR) spectroscopic properties of metal ions is essential if they are to be used in EPR-based bioimaging schemes. In this work, we probe how specific variations in the ligand structure impact L-band (ca. 1.
View Article and Find Full Text PDFAn electron paramagnetic resonance (EPR) method was used to determine the concentration of the antitumor agent Triapine in BEAS-2B cells when Triapine was bound to iron (Fe). Knowledge of the concentration of Fe-Triapine in tumor cells may be useful to adjust the administration of the drug or to adjust iron uptake in tumor cells. An EPR spectrum is obtained for Fe(3+)-Triapine, Fe(3+)(Tp), in BEAS-2B cells after addition of Fe(3+)(Tp).
View Article and Find Full Text PDFLow-frequency electron paramagnetic resonance (EPR) spectra were obtained for the Co complex of ethylene diamine tetraacetic acid (CoEDTA). It was found that the cobalt hyperfine at -mid is better resolved at a low frequency, L-band (1.37 GHz), and not resolved at X-band (9.
View Article and Find Full Text PDFIn a previous study on chromate toxicity, an increase in the 2Fe2S electron paramagnetic resonance (EPR) signal from mitochondria was found upon addition of chromate to human bronchial epithelial cells and bovine airway tissue ex vivo. This study was undertaken to show that a chromate-induced increase in the 2Fe2S EPR signal is a general phenomenon that can be used as a low-temperature EPR method to determine the maximum concentration of 2Fe2S centers in mitochondria. First, the low-temperature EPR method to determine the concentration of 2Fe2S clusters in cells and tissues is fully developed for other cells and tissues.
View Article and Find Full Text PDFLow-frequency electron paramagnetic resonance (EPR) is used to extract the EPR parameter -mid and support the approximate X-band value of -mid for Ba(CoZnTa)O₃. Although the cobalt hyperfine structure for the |±1/2〉 state is often unresolved at X-band or S-band, it is resolved in measurements on this compound. This allows for detailed analysis of the molecular orbital for the |±1/2〉 state, which is often the ground state.
View Article and Find Full Text PDFGallium, a metal with antineoplastic activity, binds transferrin (Tf) and enters tumor cells via Tf receptor1 (TfR1); it disrupts iron homeostasis leading to cell death. We hypothesized that TfR1 on brain microvascular endothelial cells (BMEC) would facilitate Tf-Ga transport into the brain enabling it to target TfR-bearing glioblastoma. We show that U-87 MG and D54 glioblastoma cell lines and multiple glioblastoma stem cell (GSC) lines express TfRs, and that their growth is inhibited by gallium maltolate (GaM) After 24 hours of incubation with GaM, cells displayed a loss of mitochondrial reserve capacity followed by a dose-dependent decrease in oxygen consumption and a decrease in the activity of the iron-dependent M2 subunit of ribonucleotide reductase (RRM2).
View Article and Find Full Text PDFDuring bacterial denitrification, two-electron reduction of NO occurs at a [Cu(μ-S)] catalytic site (Cu*) embedded within the nitrous oxide reductase (NOR) enzyme. In this Communication, an amidinate-supported [Cu(μ-S)] model cluster in its one-hole (S = /) redox state is thoroughly characterized. Along with its two-hole redox partner and fully reduced clusters reported previously, the new species completes the two-electron redox series of [Cu(μ-S)] model complexes with catalytically relevant oxidation states for the first time.
View Article and Find Full Text PDFMolecular examples of mixed-valence copper complexes through chemical oxidation are rare but invoked in the mechanism of substrate activation, especially oxygen, in copper-containing enzymes. To examine the cooperative chemistry between two metals in close proximity to each other we began studying the reactivity of a dinuclear Cu(I) amidinate complex. The reaction of [(2,6-Me2C6H3N)2C(H)]2Cu2, 1, with I2 in tetrahydrofuran (THF), CH3CN, and toluene affords three new mixed-valence copper complexes [(2,6-Me2C6H3N)2C(H)]2Cu2(μ2-I3)(THF)2, 2, [(2,6-Me2C6H3N)2C(H)]2Cu2(μ2-I) (NCMe)2, 3, and [(2,6-Me2C6H3N)2C(H)]3Cu3(μ3-I)2, 4, respectively.
View Article and Find Full Text PDFTo model the (His)7Cu4Sn (n = 1 or 2) active sites of nitrous oxide reductase, the first Cu4(μ4-S) cluster supported only by nitrogen donors has been prepared using amidinate supporting ligands. Structural, magnetic, spectroscopic, and computational characterization is reported. Electrochemical data indicates that the 2-hole model complex can be reduced reversibly to the 1-hole state and irreversibly to the fully reduced state.
View Article and Find Full Text PDFThe synthesis and characterization of new Mn(I)- and Re(I)-centered organometallic complexes fashioned with 1,4-diazabutadiene (DAB) ligands is reported. Ten compounds of the type -(α-diimine)M(CO)Br (M = Mn, Re) were obtained in moderate to excellent yield (35-80%) and high purity from the coordination of the five ligands with M(CO)Br in refluxing ethanol. Despite the electronic similarity of DAB to 2,2'-bipyridyl, the complexes described herein were poor mediators of electrochemical CO conversion to CO, but provide insight into the role of redox-active ligands in catalysis.
View Article and Find Full Text PDFThiosemicarbazones such as Triapine (Tp) and Dp44mT are tridentate iron (Fe) chelators that have well-documented antineoplastic activity. Although Fe-thiosemicarbazones can undergo redox cycling to generate reactive species that may have important roles in their cytotoxicity, there is only limited insight into specific cellular agents that can rapidly reduce Fe(III)-thiosemicarbazones and thereby promote their redox activity. Here we report that thioredoxin reductase-1 (TrxR1) and glutathione reductase (GR) have this activity and that there is considerable specificity to the interactions between specific redox centers in these enzymes and various Fe(III) complexes.
View Article and Find Full Text PDFSignificance: Despite advances made in the treatment of cancer, a significant number of patients succumb to this disease every year. Hence, there is a great need to develop new anticancer agents.
Recent Advances: Emerging data show that malignant cells have a greater requirement for iron than normal cells do and that proteins involved in iron import, export, and storage may be altered in cancer cells.
The activation of cobalamin requires the reduction of Cbl(III) to Cbl(II). The reduction by glutathione and dithiothreitol was followed using visible spectroscopy and electron paramagnetic resonance. In addition the oxidation of glutathione was monitored.
View Article and Find Full Text PDFOverproduction of reactive oxygen species (ROS) in vivo can result in damage associated with many aging-associated diseases. Defenses against ROS that have evolved include antioxidant enzymes, such as superoxide dismutases, peroxidases, and catalases, which can scavenge ROS. In addition, endogenous and dietary antioxidants play an important role in moderating damage associated with ROS.
View Article and Find Full Text PDFRanolazine, an anti-anginal drug, is a late Na(+) channel current blocker that is also believed to attenuate fatty acid oxidation and mitochondrial respiratory complex I activity, especially during ischemia. In this study, we investigated if ranolazine's protective effect against cardiac ischemia/reperfusion (IR) injury is mediated at the mitochondrial level and specifically if respiratory complex I (NADH Ubiquinone oxidoreductase) function is protected. We treated isolated and perfused guinea pig hearts with ranolazine just before 30 min ischemia and then isolated cardiac mitochondria at the end of 30 min ischemia and/or 30 min ischemia followed by 10 min reperfusion.
View Article and Find Full Text PDFExp Ther Med
January 2011
PURPOSE: 3-AP (3-aminopyridine-2-carboxaldehyde thiosemicarbazone, 3-AP) is a metal chelator that potently inhibits the enzyme ribonucleotide reductase, RR, which plays a key role in cell division and tumor progression. A sub-unit of RR has a non-heme iron and a tyrosine free radical, which are required for the enzymatic reduction of ribonucleotides to deoxyribonucleotides. The objective of the study was to determine whether 3-AP affects its targeted action by measuring EPR signals formed either directly or indirectly from low molecular weight ferric-3-AP chelates.
View Article and Find Full Text PDFHexavalent chromium [Cr(VI)] compounds (e.g. chromates) are strong oxidants that readily enter cells where they are reduced to reactive Cr intermediates that can directly oxidize some cell components and can promote the generation of reactive oxygen and nitrogen species.
View Article and Find Full Text PDFIn this work, we investigated the oxidative modification of histidine residues induced by peroxidase and thiol oxidase activities of bovine copper-zinc superoxide dismutase (Cu-ZnSOD) using NMR and pulse EPR spectroscopy. 1D NMR and 2D-NOESY were used to determine the oxidative damage at the Zn(II) and Cu(II) active sites as well as at distant histidines. Results indicate that during treatment of SOD with hydrogen peroxide (H(2)O(2)) or cysteine in the absence of bicarbonate anion (HCO(3)(-)), both exchangeable and nonexchangeable protons were affected.
View Article and Find Full Text PDFThe functioning of cytochrome oxidases involves orchestration of long-range electron transfer (ET) events among the four redox active metal centers. We report the temperature dependence of electron transfer from the Cu site to the low-spin heme-() site, i.e.
View Article and Find Full Text PDFHexavalent chromium (Cr(VI)) compounds (e.g., chromates) are strong oxidants that readily enter cells, where they are reduced to reactive Cr species that also facilitate reactive oxygen species generation.
View Article and Find Full Text PDFThe objective of this study was to assess the neuroprotective effects of a mitochondria-targeted antioxidant, Mito-Q(10), the coenzyme-Q analog attached to a triphenylphosphonium cation that targets the antioxidant to mitochondria, in experimental models of Parkinson's disease (PD). Primary mesencephalic neuronal cells and cultured dopaminergic cells were treated with 1-methyl-4-phenylpyridinium (MPP(+)), an active metabolite of the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), and mice were used for testing the efficacy of Mito-Q(10). MPP(+) treatment caused a dose-dependent loss of tyrosine hydroxylase and membrane potential and an increase in caspase-3 activation in dopaminergic cells, which were reversed by Mito-Q(10).
View Article and Find Full Text PDFMethanobactin (mb) is a low molecular mass copper-binding molecule analogous to iron-binding siderophores. The molecule is produced by many methanotrophic or methane oxidizing bacteria (MOB), but has only been characterized to date in one MOB, Methylosinus trichosporium OB3b. To explore the potential molecular diversity in this novel class of metal binding compound, the spectral (UV-visible, fluorescent, and electron paramagnetic resonance) and thermodynamic properties of mb from two γ-proteobacterial MOB, Methylococcus capsulatus Bath and Methylomicrobium album BG8, were determined and compared to the mb from the α-proteobacterial MOB, M.
View Article and Find Full Text PDFMammalian thioredoxin reductase (TrxR) is an NADPH-dependent homodimer with three redox-active centers per subunit: a FAD, an N-terminal domain dithiol (Cys(59)/Cys(64)), and a C-terminal cysteine/selenocysteine motif (Cys(497)/Sec(498)). TrxR has multiple roles in antioxidant defense. Opposing these functions, it may also assume a pro-oxidant role under some conditions.
View Article and Find Full Text PDF