Publications by authors named "William Almaguer-Melian"

Alzheimer's disease is the most common neurodegenerative disease, and its treatment is lacking. In this work, we tested Amylovis-201, a naphthalene-derived compound, as a possible therapeutic candidate for the treatment of AD. For this purpose, we performed three experiments.

View Article and Find Full Text PDF

Memory and learning allow animals to appropriate certain properties of nature with which they can navigate in it successfully. Memory is acquired slowly and consists of two major phases, a fragile early phase (short-term memory, <4 h) and a more robust and long-lasting late one (long-term memory, >4 h). Erythropoietin (EPO) prolongs memory from 24 to 72 h when animals are trained for 5 min in a place recognition task but not when training lasted 3 min (short-term memory).

View Article and Find Full Text PDF

Synapses can experience long-term enhancements in its efficacy transmission in an activity-dependent manner (LTP, Long-Term Potentiation). This could contribute to store the living experiences in memory. Consequently, loss of synaptic plasticity can lead to failures in memory encoding and storage.

View Article and Find Full Text PDF

Synaptic plasticity is a key mechanism of neural plasticity involved in learning and memory. A reduced or impaired synaptic plasticity could lead to a deficient learning and memory. On the other hand, besides reducing hipocampal dependent learning and memory, fimbria-fornix lesion affects LTP.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is the most common and devastating neurodegenerative condition worldwide, characterized by the aggregation of amyloid-β and phosphorylated tau protein, and is accompanied by a progressive loss of learning and memory. A healthy nervous system is endowed with synaptic plasticity, among others neural plasticity mechanisms, allowing structural and physiological adaptations to changes in the environment. This neural plasticity modification sustains learning and memory, and behavioral changes and is severely affected by pathological and aging conditions, leading to cognitive deterioration.

View Article and Find Full Text PDF

Recently we provided data showing that amygdala stimulation can ameliorate spatial memory impairments in rats with lesion in the fimbria-fornix (FF). The mechanisms for this improvement involve early gene expression and synthesis of BDNF, MAP-2, and GAP43 in the hippocampus and prefrontal cortex. Now we have studied which brain structures are activated by the amygdala using c-Fos as a marker of neural activation.

View Article and Find Full Text PDF

Erythropoietin has shown wide physiological effects on the central nervous system in animal models of disease, and in healthy animals. We have recently shown that systemic EPO administration 15 min, but not 5 h, after daily training in a water maze is able to induce the recovery of spatial memory in fimbria-fornix chronic-lesioned animals, suggesting that acute EPO triggers mechanisms which can modulate the active neural plasticity mechanism involved in spatial memory acquisition in lesioned animals. Additionally, this EPO effect is accompanied by the up-regulation of plasticity-related early genes.

View Article and Find Full Text PDF

Background: Voxel-based morphometric (VBM) studies in neuromyelitis optica (NMO) have shown limited reproducibility. A previous study suggests that the number of optic neuritis (ON) attacks may be a confounding factor when comparing NMO patients with controls if it is not taken into account during VBM analysis.

Purpose: To investigate the potential confounding effect of the number of ON attacks, for both tissue volumes and perfusion by voxel-based statistical analysis.

View Article and Find Full Text PDF

Background: Erythropoietin (EPO) upregulates the mitogen activated protein kinase (MAPK) cascade, a central signaling pathway in cellular plastic mechanisms, and is critical for normal brain development.

Objective: We hypothesized that EPO could modulate the plasticity mechanisms supporting spatial memory recovery in fimbria-fornix-transected animals.

Methods: Fimbria-fornix was transected in 3 groups of rats.

View Article and Find Full Text PDF

Recent neuroimaging studies show that brain abnormalities in neuromyelitis optica (NMO) are more frequent than earlier described. Yet, more research considering multiple aspects of NMO is necessary to better understand these abnormalities. A clinical feature of relapsing NMO (RNMO) is that the incremental disability is attack-related.

View Article and Find Full Text PDF

Purpose: To investigate a possible role of neurotrophins in the memory improving effect of stimulating the basolateral amygdala.

Methods: The BDNF and NGF levels were measured in the hippocampus of fimbria-fornix lesioned male rats after four days of training in the water maze and stimulation of the basolateral amygdala.

Results: The behavioral results confirm that daily post-training stimulation of the amygdala improves the learning abilities of the lesioned animals.

View Article and Find Full Text PDF

Novelty processing can transform short-term into long-term memory. We propose that this memory-reinforcing effect of novelty could be explained by mechanisms outlined in the "synaptic tagging hypothesis." Initial short-term memory is sustained by a transient plasticity change at activated synapses and sets synaptic tags.

View Article and Find Full Text PDF

Affective factors importantly interact with behavior and memory. Physiological mechanisms that underlie such interactions are objects of intensive studies. This involves the direct investigation of its relevance to understand learning and memory formation as well as the search for possibilities to treat memory disorders.

View Article and Find Full Text PDF

Transient long-term potentiation (E-LTP) can be transformed into a long-lasting LTP (L-LTP) in the dentate gyrus (DG) by behavioral stimuli with high motivational content. Previous research from our group has identified several brain structures, such as the basolateral amygdala (BLA), the locus coeruleus (LC), the medial septum (MS) and transmitters as noradrenaline (NA) and acetylcholine (ACh) that are involved in these processes. Here we have investigated the functional interplay among brain structures and systems which result in the conversion of a E-LTP into a L-LTP (reinforcement) by stimulation of the BLA (BLA-R).

View Article and Find Full Text PDF

Purpose: We have previously shown that the stimulation of limbic structures related to affective life such as the amygdale can improve and reinforce neural plastic processes related to hippocampus-dependent forms of explicit memory, as spatial memory and LTP. We now assessed whether this effect is restricted to the mentioned structure and memory type, or represents a more general form of modulatory influence.

Methods: Young, male Sprague Dawley rats were implanted stereotactically with one electrode in the basolateral amygdala (BLA) and trained to acquire a motor skill using their right anterior limb.

View Article and Find Full Text PDF

Growing evidence suggests that processes of synaptic plasticity, such as long-term potentiation (LTP) occurring in one synaptic population, can be modulated by consolidating afferents from other brain structures. We have previously shown that an early-LTP lasting less than 4 h (E-LTP) in the dentate gyrus can be prolonged by stimulating the basolateral amygdala, the septum or the locus coeruleus within a specific time window. Pharmacological experiments have suggested that noradregeneric (NE) and/or cholinergic systems might be involved in these effects.

View Article and Find Full Text PDF