Ferritin four-helix bundle subunits self-assemble to create a stable multimer with a large central hydrophilic cavity where metal ions bind. To explore the versatility of this reaction vessel, computational design was used to generate cavities with increasingly apolar surface areas inside a dodecameric ferritin-like protein, Dps. Cavity mutants, in which as many as 120 surface accessible hydrophilic residues were replaced with hydrophobic amino acids, were shown to still assemble properly using size-exclusion chromatography and dynamic light scattering measurements.
View Article and Find Full Text PDFWe show that X-ray magnetic circular dichroism (XMCD) can be employed to probe the oxidation states and other electronic structural features of nickel active sites in proteins. As a calibration standard, we have measured XMCD and X-ray absorption (XAS) spectra for the nickel(II) derivative of Pseudomonas aeruginosa azurin (NiAz). Our analysis of these spectra confirms that the electronic ground state of NiAz is high-spin (S = 1); we also find that the L(3)-centroid energy is 853.
View Article and Find Full Text PDFLaser flash-quench methods have been used to generate tyrosine and tryptophan radicals in structurally characterized rhenium-modified Pseudomonas aeruginosa azurins. Cu(I) to "Re(II)" electron tunneling in Re(H107) azurin occurs in the microsecond range. This reaction is much faster than that studied previously for Cu(I) to Ru(III) tunneling in Ru(H107) azurin, suggesting that a multistep ("hopping") mechanism might be involved.
View Article and Find Full Text PDFNear-UV irradiation of structurally characterized [Re(I)(CO)3(1,10-phenanthroline)(Q107H)](W48F/Y72F/H83Q/Y108W)AzM(II) [Az = Pseudomonas aeruginosa azurin, M = Cu, Zn]/[Co(NH3)5Cl]Cl2 produces a tryptophan radical (W108*) with unprecedented kinetic stability. After rapid formation (k = 2.8 x 106 s-1), the radical persists for more than 5 h at room temperature in the folded ReAzM(II) structure.
View Article and Find Full Text PDF