Publications by authors named "William A Tobias"

Purpose: To evaluate T , T2*, and signal-to-noise ratio (SNR) for hyperpolarized helium-3 ( He) MRI of the human lung at three magnetic field strengths ranging from 0.43T to 1.5T.

View Article and Find Full Text PDF

Magnetic resonance imaging (MRI) provides fine spatial resolution, spectral sensitivity and a rich variety of contrast mechanisms for diagnostic medical applications. Nuclear imaging using γ-ray cameras offers the benefits of using small quantities of radioactive tracers that seek specific targets of interest within the body. Here we describe an imaging and spectroscopic modality that combines favourable aspects of both approaches.

View Article and Find Full Text PDF

Purpose: To evaluate regional anisotropy of lung-airspace orientation by assessing the dependence of helium-3 ((3) He) apparent diffusion coefficient (ADC) values on the direction of diffusion sensitization at two field strengths.

Materials And Methods: Hyperpolarized (3) He diffusion-weighted magnetic resonance imaging (MRI) of the lung was performed at 0.43T and 1.

View Article and Find Full Text PDF

We describe a homebuilt MRI system for imaging laser-polarized xenon-129 at a very low holding field of 2.2mT. A unique feature of this system was the use of Maxwell coils oriented at so-called "magic angles" to generate the transverse magnetic field gradients, which provided a simple alternative to Golay coils.

View Article and Find Full Text PDF

Purpose: To develop and validate a method for acquiring helium-3 ((3) He) and proton ((1) H) three-dimensional (3D) image sets of the human lung with isotropic spatial resolution within a 10-s breath-hold by using compressed sensing (CS) acceleration, and to assess the fidelity of undersampled images compared with fully sampled images.

Methods: The undersampling scheme for CS acceleration was optimized and tested using (3) He ventilation data. Rapid 3D acquisition of both (3) He and (1) H data during one breath-hold was then implemented, based on a balanced steady-state free-precession pulse sequence, by random undersampling of k-space with reconstruction by means of minimizing the L1 norm and total variance.

View Article and Find Full Text PDF

A pulse-sequence strategy was developed for generating regional maps of alveolar oxygen partial pressure (pO2) in a single 6-sec breath hold, for use in human subjects with impaired lung function. Like previously described methods, pO2 values are obtained by measuring the oxygen-induced T1 relaxation of inhaled hyperpolarized 3He. Unlike other methods, only two 3He images are acquired: one with reverse-centric and the other with centric phase-encoding order.

View Article and Find Full Text PDF

We present a new pulse sequence for measuring very-short-time-scale restricted diffusion of hyperpolarized noble gases. The pulse sequence is based on concatenating a large number of bipolar diffusion-sensitizing gradients to increase the diffusion attenuation of the MR signal while maintaining a fundamentally short diffusion time. However, it differs in several respects from existing methods that use oscillating diffusion gradients for this purpose.

View Article and Find Full Text PDF

Xenon polarization Transfer Contrast (XTC) MRI pulse sequences permit the gas exchange of hyperpolarized xenon-129 in the lung to be measured quantitatively. However, the pulse sequence parameter values employed in previously published work were determined empirically without considering the now-known gas exchange rates and the underlying lung physiology. By using a theoretical model for the consumption of magnetization during data acquisition, the noise intensity in the computed gas-phase depolarization maps was minimized as a function of the gas-phase depolarization rate.

View Article and Find Full Text PDF

The apparent diffusion coefficients (ADCs) of hyperpolarized (3)He and (129)Xe gases were measured in the lungs of rabbits with elastase-induced emphysema and correlated against the mean chord length from lung histology. In vivo measurements were performed at baseline and 2, 4, 6, and 8 wk after instillation of elastase (mild and moderate emphysema groups) or saline (control group). ADCs were determined from acquisitions that used two b values.

View Article and Find Full Text PDF