Publications by authors named "William A Rudert"

Thymus involution, associated with aging or pathological insults, results in diminished output of mature T-cells. Restoring the function of a failing thymus is crucial to maintain effective T cell-mediated acquired immune response against invading pathogens. However, thymus regeneration and revitalization proved to be challenging, largely due to the difficulties of reproducing the unique 3D microenvironment of the thymic stroma that is critical for the survival and function of thymic epithelial cells (TECs).

View Article and Find Full Text PDF

One of the major obstacles in organ transplantation is to establish immune tolerance of allografts. Although immunosuppressive drugs can prevent graft rejection to a certain degree, their efficacies are limited, transient, and associated with severe side effects. Induction of thymic central tolerance to allografts remains challenging, largely because of the difficulty of maintaining donor thymic epithelial cells in vitro to allow successful bioengineering.

View Article and Find Full Text PDF

For reasons not fully understood, patients with an organ-specific autoimmune disease have increased risks of developing autoimmune responses against other organs/tissues. We identified ICA69, a known β-cell autoantigen in Type 1 diabetes, as a potential common target in multi-organ autoimmunity. NOD mice immunized with ICA69 polypeptides exhibited exacerbated inflammation not only in the islets, but also in the salivary glands.

View Article and Find Full Text PDF

Anti-insulin autoimmunity is one of the primary forces in initiating and progressing β-cell destruction in type 1 diabetes. While insulin expression in thymic medullary epithelial cells has been shown to be essential for establishing β-cell central tolerance, the function of insulin expression in antigen-presenting cells (APCs) of hematopoietic lineage remains elusive. With a Cre-lox reporter approach, we labeled Aire-expressing cells with enhanced yellow fluorescent proteins, and found that insulin expression in the spleen was restricted predominantly to a population of Aire(+)CD11c(int)B220(+) dendritic cells (DCs).

View Article and Find Full Text PDF

Intracellular staining is a widely used flow cytometry (FCM)-based technique to detect the expression of cytoslio nucleic antigens. However, intracellular staining of cells expressing cytosolic fluorescent protein (FP) markers was proven to be problematic as significant loss of the FP-signal was routinely observed. Using splenocytes harvested from mice constitutively expressing the enhanced yellow fluorescent proteins (YFP) as a model, we modified the widely used intracellular staining protocol and successfully achieved simultaneous detection of both the nuclear proteins and YFP in T-regulatory cells.

View Article and Find Full Text PDF

Inspired by the articles presented in this issue of The Review of Diabetic Studies, we considered it useful to summarize the latest achievements and current challenges we face in the search for a cure of type 1 diabetes. In this editorial article, we took into account how the research landscape has changed in only a few years. While modern lifestyles impose new concerns, now we have a better knowledge of the various aspects of the disease that can be used to treat our young patients with more appropriate approaches, thereby eliminating old and obsolete prejudices.

View Article and Find Full Text PDF

Insulin expression in the thymus has been implicated in regulating the negative selection of autoreactive T cells and in mediating the central immune tolerance towards pancreatic beta-cells. To further explore the function of this ectopic insulin expression, we knocked out the mouse Ins2 gene specifically in the Aire-expressing medullary thymic epithelial cells (mTECs), without affecting its expression in the beta-cells. When further crossed to the Ins1 knockout background, both male and female pups (designated as ID-TEC mice for insulin-deleted mTEC) developed diabetes spontaneously around 3 weeks after birth.

View Article and Find Full Text PDF

Objective: To describe the ability of nonhuman primate endocrine pancreata to reestablish endogenous insulin production after chemical beta-cell destruction.

Research Design And Methods: Eleven monkeys (Macaca fascicularis) were rendered diabetic with streptozotocin. Eight diabetic monkeys received intraportal porcine islet transplantation.

View Article and Find Full Text PDF

Successful transplantation of tissue during solid organ and bone marrow transplantation relies on accurate determination of the human leukocyte antigen (HLA) phenotype of the potential donor(s) and recipient. Matching donor with recipient for a kidney transplant generally means finding a six-antigen match by looking at each of two alleles at HLA-A, -B, and -DR loci. For bone marrow transplantation the HLA-C and -DQ alleles are also considered.

View Article and Find Full Text PDF

Design of locus-specific primers for use during genetic analysis requires combining information from multiple sources and can be a time-consuming process when validating large numbers of assays. Data warehousing of genomic DNA sequences and genetic variations when coupled with software applications for optimizing the generation of locus-specific primers can increase the efficiency of assay development. Selection of oligonucleotide primers for PCR and Pyrosequencing (SOP3) software allows user-directed queries of warehoused data collected from the human and mouse genome sequencing projects.

View Article and Find Full Text PDF

This study addressed an important biological question, namely how certain HLA molecules modulate the disease risk conferred by other HLA molecules. The HLA molecules under investigation were HLA-DQ8 and -DR4, the two most prevalent HLA class II alleles found in Caucasian type 1 diabetic patients. A panel of human GAD (hGAD65)-specific CD4 T-cell lines and hybridomas was generated to serve as detection reagents for evaluating the peptide occupancy of DQ8 and DR4.

View Article and Find Full Text PDF

SOP3v2 is a database-driven graphical web-based application for facilitating genotyping assay design. SOP3v2 accepts data input in numerous forms, including gene names, reference sequence numbers and physical location. For each entry, the application presents a set of recommended forward and reverse PCR primers, along with a sequencing primer, which is optimized for sequence-based genotyping assays.

View Article and Find Full Text PDF

SOP3 is a web-based software tool for designing oligonucleotide primers for use in the analysis of single nucleotide polymorphisms (SNPs). Accessible via the Internet, the application is optimized for developing the PCR and sequencing primers that are necessary for Pyrosequencing. The application accepts as input gene name, SNP reference sequence number, or chromosomal nucleotide location.

View Article and Find Full Text PDF

Sequencing of alleles of the highly polymorphic, multiple loci HLA-DRB gene family was performed by pyrosequencing using purified DNA from the 11(th) International Histocompatibility Workshop human lymphoblastiod cell lines as well as genomic DNA isolated from blood samples obtained from healthy adult volunteers. Genomic DNA was prepared from donors whose blood had been stored either frozen or as dried blood spots. Pyrosequence-based typing was optimized for identifying alleles of the HLA-DRB1, -3, -4, and -5 genes.

View Article and Find Full Text PDF

Type 1 diabetes results from the selective destruction of insulin-producing beta cells in the islets of Langerhans, and autoimmune T cells are thought to be the mediators of this destruction. T cells are also responsible for allorejection once the islets are transplanted into a patient to reduce the negative consequences of a lack of insulin. To better understand these processes, we have developed a transgenic mouse expressing proinsulin II tagged with a live-cell fluorescent reporter protein, Timer.

View Article and Find Full Text PDF

Passenger leukocytes have been demonstrated to play significant roles in initiating and also regulating immune reactions after organ transplantation. Reliable techniques to detect donor leukocytes in recipients after organ transplantation are essential to analyze the role, function, and behavior of these leukocytes. In this report we describe a simple, reliable method to detect donor cells with low frequencies using peripheral blood samples.

View Article and Find Full Text PDF

The enzyme alpha1,3-galactosyltransferase (alpha1,3GT or GGTA1) synthesizes alpha1,3-galactose (alpha1,3Gal) epitopes (Galalpha1,3Galbeta1,4GlcNAc-R), which are the major xenoantigens causing hyperacute rejection in pig-to-human xenotransplantation. Complete removal of alpha1,3Gal from pig organs is the critical step toward the success of xenotransplantation. We reported earlier the targeted disruption of one allele of the alpha1,3GT gene in cloned pigs.

View Article and Find Full Text PDF

Through its Src homology 3 (SH3) and SH2 domains, the Src kinase Lyn interacts with a small number of phosphoproteins, such as Shc, Cbl, and Vav, which regulate cell cycle and the cytoskeleton. Using Lyn's Unique, SH3, and SH2 domains as bait in a yeast 2-hybrid screen, we isolated a novel gene product with features of a scaffolding protein. We named it Felic because it contains a domain homologous to the tyrosine kinase Fes and the cytoskeletal protein ezrin and forms a Lyn interaction with the GTPase Cdc42 (Felic).

View Article and Find Full Text PDF

Glucosamine is a naturally occurring derivative of glucose and is an essential component of glycoproteins and proteoglycans, important constituents of many eukaryotic proteins. In cells, glucosamine is produced enzymatically by the amidation of glucose 6-phosphate and can then be further modified by acetylation to result in N-acetylglucosamine. Commercially, glucosamine is sold over-the-counter to relieve arthritis.

View Article and Find Full Text PDF

Engagement of the Granulocyte-Colony-Stimulating Factor (G-CSF) receptor activates non-receptor protein tyrosine kinases Lyn and Jak2. We found that Lyn-deficient DT40 cells that express the G-CSF receptor (DT40GR) do not demonstrate G-CSF-induced mitogenic signaling. Lyn associates with and phosphorylates a small set of molecules, including c-Cbl.

View Article and Find Full Text PDF

By yeast two-hybrid screening with the Src kinase Lyn as bait, we identified a novel gene product with features of a scaffolding protein. Reported as Felic ( es-related, with homology to Ezrin, Lyn interactor with Cdc42), it is related to the CIP4 (Cdc42 Interacting Protein-4) gene. Southern blotting for CIP4/Felic of genomic DNA shows a single band, suggesting no gene duplication.

View Article and Find Full Text PDF

Indoleamine 2,3-dioxygenase (IDO) catalyzes the breakdown of the amino acid tryptophan into kyneurenine. It has been shown that IDO production by placental trophoblasts prevents the attack of maternal T-cells activated in response to the paternal HLA alleles expressed by the tissues of the fetus. In this article, we show that adenoviral gene transfer of IDO to pancreatic islets can sufficiently deplete culture media of tryptophan and consequently inhibit the proliferation of T-cells in vitro.

View Article and Find Full Text PDF