Transgenic Res
December 2021
Transgenic American chestnut trees expressing a wheat gene for oxalate oxidase (OxO) can tolerate chestnut blight, but as with any new restoration material, they should be carefully evaluated before being released into the environment. Native pollinators such as bumble bees are of particular interest: Bombus impatiens use pollen for both a source of nutrition and a hive building material. Bees are regular visitors to American chestnut flowers and likely contribute to their pollination, so depending on transgene expression in chestnut pollen, they could be exposed to this novel source of OxO during potential restoration efforts.
View Article and Find Full Text PDFAmerican chestnut (Castanea dentata [Marsh.] Borkh.) was once the dominant hardwood species in Eastern North America before an exotic fungal pathogen, Cryphonectria parasitica (Murrill) Barr, functionally eliminated it across its range.
View Article and Find Full Text PDFAn invasive fungal pathogen has reduced the American chestnut (), once a keystone tree species within its natural range in the eastern United States and Canada, to functional extinction. To help restore this important canopy tree, blight-tolerant American chestnut trees have been developed using an oxalate oxidase-encoding gene from wheat. This enzyme breaks down oxalate, which is produced by the pathogen and forms killing cankers.
View Article and Find Full Text PDFThe American chestnut () was once an integral part of eastern United States deciduous forests, with many environmental, economic, and social values. This ended with the introduction of an invasive fungal pathogen that wiped out over three billion trees. Transgenic American chestnuts expressing a gene for oxalate oxidase successfully tolerate infections by this blight fungus, but potential non-target environmental effects should be evaluated before new restoration material is released.
View Article and Find Full Text PDFAmerican chestnut (Castanea dentata) is a classic example of a native keystone species that was nearly eradicated by an introduced fungal pathogen. This report describes progress made toward producing a fully American chestnut tree with enhanced resistance to the blight fungus (Cryphonectria parasitica). The transgenic American chestnut 'Darling4,' produced through an Agrobacterium co-transformation procedure to express a wheat oxalate oxidase gene driven by the VspB vascular promoter, shows enhanced blight resistance at a level intermediate between susceptible American chestnut and resistant Chinese chestnut (Castanea mollissima).
View Article and Find Full Text PDFThe key to successful transformation of American chestnut is having the correct combination of explant tissue, selectable markers, a very robust DNA delivery system, and a reliable regeneration system. The most important components of this transformation protocol for American chestnut are the following: starting out with rapidly dividing somatic embryos, treating the embryos gently throughout the Agrobacterium inoculation and cocultivation steps, doing the cocultivation step in desiccation plates, and finally transferring the embryos into temporary-immersion bioreactors for selection. None of these departures from standard Agrobacterium transformation protocols is sufficient by itself to achieve transgenic American chestnut, but each component makes a difference, resulting in a highly robust protocol.
View Article and Find Full Text PDFAppl Environ Microbiol
January 2015
American chestnut (Castanea dentata [Marsh.] Borkh.) dominated the eastern forests of North America, serving as a keystone species both ecologically and economically until the introduction of the chestnut blight, Cryphonectria parasitica, functionally eradicated the species.
View Article and Find Full Text PDFAmerican chestnuts (Castanea dentata), effectively eliminated from eastern North America by chestnut blight in the twentieth century, are the subject of multiple restoration efforts. Screening individual trees (or tree types) for blight resistance is a critical step in all of these programs. Traditional screening involves inoculating stems of >3-year-old trees with the blight fungus (Cryphonectria parasitica), then measuring resulting cankers a few months later.
View Article and Find Full Text PDFAmerican chestnut (Castanea dentata) was transformed with a wheat oxalate oxidase (oxo) gene in an effort to degrade the oxalic acid (OA) secreted by the fungus Cryphonectria parasitica, thus decreasing its virulence. Expression of OxO was examined under two promoters: a strong constitutive promoter, CaMV 35S, and a predominantly vascular promoter, VspB. Oxo gene transcription was quantified by RT-qPCR.
View Article and Find Full Text PDFThe isomers of monosaccharide always produce multiple chromatographic peaks as volatile derivatives during gas chromatography, which may result in the overlapping of different sugar peaks. Whereas reduction and oximation of sugar carbonyl groups for GC analysis do eliminate many isomer derivatives, the approaches create new problems. One ketose can yield two peaks by oximation, and different aldoses and ketoses can yield the same alditol upon reduction, leading to the inability to detect some important monosaccharides.
View Article and Find Full Text PDFUnlabelled: BACKGROUND1471-2229-9-51: American chestnut (Castanea dentata) was devastated by an exotic pathogen in the beginning of the twentieth century. This chestnut blight is caused by Cryphonectria parasitica, a fungus that infects stem tissues and kills the trees by girdling them. Because of the great economic and ecological value of this species, significant efforts have been made over the century to combat this disease, but it wasn't until recently that a focused genomics approach was initiated.
View Article and Find Full Text PDFThe American elm (Ulmus americana L.) was once one of the most common urban trees in eastern North America until Dutch-elm disease (DED), caused by the fungus Ophiostoma novo-ulmi, eliminated most of the mature trees. To enhance DED resistance, Agrobacterium was used to transform American elm with a transgene encoding the synthetic antimicrobial peptide ESF39A, driven by a vascular promoter from American chestnut.
View Article and Find Full Text PDFThe key to successful transformation of American chestnut is having the correct combination of explant tissue, selectable and scorable markers, and a reliable regeneration system. Rapidly dividing somatic embryos, growing as proembryogenic masses, are a suitable tissue; the bar gene is a suitable selectable marker in conjunction with 1.0 to 10 mg/L phosphirothricin (PPT); and the mgfp5-ER gene is an effective nondestructive scorable marker.
View Article and Find Full Text PDFAmerican elm (Ulmus americana) is a valuable and sentimental tree species that was decimated by Dutch elm disease in the mid-20th century. Therefore, any methods for modifying American elm or enhancing disease resistance are significant. This protocol describes transformation and tissue culture techniques used on American elm.
View Article and Find Full Text PDFA gene cassette, p35S-CNO, was designed to express three gene products driven by a single constitutive CaMV 35S promoter. The individual coding regions were linked in frame to produce a single polyprotein, using spacer sequences encoding a specific heptapeptide cleavage recognition site (ENLYFQS) for the nuclear-inclusion-a (NIa) proteinase of tobacco etch virus (TEV). The protein coding sequences used were: a Trichoderma harzinum endochitinase, a truncated NIa proteinase of TEV, and a wheat oxalate oxidase.
View Article and Find Full Text PDFA cDNA clone with similarity to genes encoding cystatin was recently isolated from a cDNA library created using mRNA extracted from stem tissues of Castanea dentata (Marsh.) Borkh. (CASde:Pic1).
View Article and Find Full Text PDF