Publications by authors named "William A Mackay"

Since the first descriptions of sensorimotor rhythms by Berger (1929) and by Jasper and Penfield (1949), the potential role of beta oscillations (~13-30 Hz) in the brain has been intensely investigated. We start this review by showing that experimental studies in humans and monkeys have reached a consensus on the facts that sensorimotor beta power is low during movement, transiently increases after movement end (the "beta rebound") and tonically increases during object grasping. Recently, a new surge of studies exploiting more complex sensorimotor tasks including multiple events, such as instructed delay tasks, reveal novel characteristics of beta oscillatory activity.

View Article and Find Full Text PDF

To examine the effects of rhinal and dorsolateral prefrontal cortex lesions on object and spatial recognition memory in canines, we used a protocol in which both an object (delayed nonmatching to sample, or DNMS) and a spatial (delayed nonmatching to position or DNMP) recognition task were administered daily. The tasks used similar procedures such that only the type of stimulus information to be remembered differed. Rhinal cortex (RC) lesions produced a selective deficit on the DNMS task, both in retention of the task rules at short delays and in object recognition memory.

View Article and Find Full Text PDF

Region specific declines in the cerebral glucose metabolism are an early and progressive feature of Alzheimer's disease (AD). Such declines occur pre-symptomatically and offer a potential point of intervention in developing AD therapeutics. Medium chain triglycerides (MCTs), which are rapidly converted to ketone bodies, were tested for their ability to provide an alternate energy source to neurons suffering from compromised glucose metabolism.

View Article and Find Full Text PDF

Kelvin and acoustic fields of high-frequency have been employed in the non-invasive investigation of immortalized hypothalamic neurons, in order to assess their response to different concentrations of specific drugs, toxins, a stress-reducing hormone and neurotrophic factors. In an analytical systems biology approach, this work constitutes a first study of living neuron cultures by scanning Kelvin nanoprobe (SKN) and thickness shear mode (TSM) acoustic wave techniques. N-38 hypothalamic mouse neurons were immobilized on the gold electrode of 9 MHz TSM acoustic wave devices and gold-coated slides for study by SKN.

View Article and Find Full Text PDF

Cortical local field potentials (LFPs) are modulated in parallel with single neuron discharge, but the information they carry is often unclear. Multi-electrode recordings of both LFPs and single neuron activities were made in motor cortex as monkeys performed a delayed pointing task in which the probability of the moment of signal occurrence, and thus movement execution, was manipulated. A large positive LFP component (P1) appeared immediately preceding movement onset only under conditions of low probability, that is, when a response signal was weakly expected.

View Article and Find Full Text PDF

Abruptly stopping a planned movement before it has even begun can be crucial to retarding a premature action. In the monkey motor cortex, we report herein that rapid cancellation of a prepared motor act involved the brief activation of neurons representing a movement in the opposite direction (anti-directional activity). When an expected GO signal failed to occur, this opposing anti-directional discharge appeared.

View Article and Find Full Text PDF