Publications by authors named "William A LaMarr"

Glycolysis is a 10-step metabolic pathway involved in producing cellular energy. Many tumors exhibit accelerated glycolytic rates, and enzymes that participate in this pathway are focal points of cancer research. Here, a novel method for the measurement of glycolysis reactants from in vitro samples is presented.

View Article and Find Full Text PDF

Mucopolysaccharidoses (MPS) are a group of lysosomal storage disorders caused by deficiency of the lysosomal enzymes essential for catabolism of glycosaminoglycans (GAGs). Accumulation of undegraded GAGs results in dysfunction of multiple organs, resulting in distinct clinical manifestations. A range of methods have been developed to measure specific GAGs in various human samples to investigate diagnosis, prognosis, pathogenesis, GAG interaction with other molecules, and monitoring therapeutic efficacy.

View Article and Find Full Text PDF

Mucopolysaccharidoses (MPS) are caused by deficiency of one of a group of specific lysosomal enzymes, resulting in excessive accumulation of glycosaminoglycans (GAGs). We previously developed GAG assay methods using liquid chromatography tandem mass spectrometry (LC-MS/MS); however, it takes 4-5 min per sample for analysis. For the large numbers of samples in a screening program, a more rapid process is desirable.

View Article and Find Full Text PDF

Glycosaminoglycans (GAGs) are distributed in the whole body and play a variety of important physiological roles associated with inflammation, growth, coagulation, fibrinolysis, lipolysis, and cell-matrix biology. Accumulation of undegraded GAGs in lysosomes gives rise to a distinct clinical syndrome, mucopolysaccharidoses. Measurement of each specific GAG in a variety of specimens is urgently required to understand GAG interaction with other molecules, physiological status of patients, and prognosis and pathogenesis of the disease.

View Article and Find Full Text PDF

We investigated the utility of an SPE-MS/MS platform in combination with a modified SISCAPA workflow for chromatography-free MRM analysis of proteotypic peptides in digested human plasma. This combination of SISCAPA and SPE-MS/MS technology allows sensitive, MRM-based quantification of peptides from plasma digests with a sample cycle time of ∼7 s, a 300-fold improvement over typical MRM analyses with analysis times of 30-40 min that use liquid chromatography upstream of MS. The optimized system includes capture and enrichment to near purity of target proteotypic peptides using rigorously selected, high affinity, antipeptide monoclonal antibodies and reduction of background peptides using a novel treatment of magnetic bead immunoadsorbents.

View Article and Find Full Text PDF

High throughput-solid phase extraction tandem mass spectrometry (HT-SPE/MS) is a fully automated system that integrates sample preparation using ultrafast online solid phase extraction (SPE) with mass spectrometry detection. HT-SPE/MS is capable of conducting analysis at a speed of 5-10 s per sample, which is several fold faster than chromatographically based liquid chromatography-mass spectrometry (LC-MS). Its existing applications mostly involve in vitro studies such as high-throughput therapeutic target screening, CYP450 inhibition, and transporter evaluations.

View Article and Find Full Text PDF

The sirtuin enzymes, a class of NAD(+)-dependent histone deacetylases, are a focal point of epigenetic research because of their roles in regulating gene expression and cellular differentiation by deacetylating histones and a host of transcription factors, including p53. Here, the authors present two label-free screening methodologies to study sirtuin activity using high-throughput mass spectrometry. The first method involves the detection of native peptides and provides a platform for more detailed mechanistic studies by enabling the concurrent and direct measurement of multiple modification states.

View Article and Find Full Text PDF

Histone acetyltransferases (HATs) catalyze the transfer of an acetyl group from an acetyl-coenzyme A donor molecule to specific lysine residues within proteins. The acetylation state of proteins, particularly histones, is known to modulate their intermolecular binding properties and control various cellular processes, most notably transcriptional activation. In addition, deregulation of HAT activity has been linked to the development of a number of cancers; therefore, compounds that affect these enzymes have strong potential as therapeutic agents.

View Article and Find Full Text PDF

To facilitate discovery of compounds modulating sphingosine-1-phosphate (S1P) signaling, the authors used high-throughput mass spectrometry technology to measure S1P formation in human whole blood. Since blood contains endogenous sphingosine (SPH) and S1P, mass spectrometry was chosen to detect the conversion of an exogenously added 17-carbon-long variant of sphingosine, C17SPH, into C17S1P. The authors developed procedures to achieve homogeneous mixing of whole blood in 384-well plates and for a method requiring minimal manipulations to extract S1P from blood in 96- and 384-well plates prior to analyses using the RapidFire(®) mass spectrometry system.

View Article and Find Full Text PDF

A high-throughput mass spectrometry assay to measure the catalytic activity of UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase, LpxC, is described. This reaction is essential in the biosynthesis of lipopolysaccharide (LPS) of gram-negative bacteria and is an attractive target for the development of new antibacterial agents. The assay uses the RapidFire mass spectrometry platform to measure the native LpxC substrate and the reaction product and thereby generates a ratiometric readout with minimal artifacts due to detection interference.

View Article and Find Full Text PDF

Label-free mass spectrometric (MS) technologies are particularly useful for enzyme assay design for drug discovery screens. MS permits the selective detection of enzyme substrates or products in a wide range of biological matrices without need for derivatization, labeling, or capture technologies. As part of a cardiovascular drug discovery effort aimed at finding modulators of cystathionine beta-synthase (CBS), we used the RapidFire((R)) label-free high-throughput MS (HTMS) technology to develop a high-throughput screening (HTS) assay for CBS activity.

View Article and Find Full Text PDF

In this review various technologies and approaches for the utilization of mass spectrometry in high-throughput analyses are discussed. The use of quadrupole-based mass spectrometry in the screening of chemical libraries against enzymatic targets for the identification of inhibitors and/or activators is highlighted. The RapidFire mass spectrometry system, an integrated on-line solid-phase extraction system interfaced to a triple-quadrupole mass spectrometer is described in detail, and the identification of a series of inhibitors of the acetyl-coenzyme A carboxylase (ACC) assay is described.

View Article and Find Full Text PDF

Several recent reports suggest that stearoyl-CoA desaturase 1 (SCD1), the rate-limiting enzyme in monounsaturated fatty acid synthesis, plays an important role in regulating lipid homeostasis and lipid oxidation in metabolically active tissues. As several manifestations of type 2 diabetes and related metabolic disorders are associated with alterations in intracellular lipid partitioning, pharmacological manipulation of SCD1 activity might be of benefit in the treatment of these disease states. In an effort to identify small molecule inhibitors of SCD1, we have developed a mass spectrometry based high-throughput screening (HTS) assay using deuterium labeled stearoyl-CoA substrate and induced rat liver microsomes.

View Article and Find Full Text PDF

Mass spectrometry is an emerging format for label-free high-throughput screening. The main limitation of mass spectrometry is throughput, due to the requirement to purify samples prior to ionization. Here the authors compare an automated high-throughput mass spectrometry (HTMS) system (RapidFire) with the scintillation proximity assay (SPA).

View Article and Find Full Text PDF

A high-throughput mass spectrometry assay to measure the catalytic activity of phosphatidylserine decarboxylase (PISD) is described. PISD converts phosphatidylserine to phosphatidylethanolamine during lipid synthesis. Traditional methods of measuring PISD activity are low throughput and unsuitable for the high-throughput screening of large compound libraries.

View Article and Find Full Text PDF

The anilinouracils (AUs) such as 6-(3-ethyl-4-methylanilino)uracil (EMAU) are a novel class of gram-positive, selective, bactericidal antibacterials which inhibit pol IIIC, the gram-positive-specific replicative DNA polymerase. We have linked various fluoroquinolones (FQs) to the N-3 position of EMAU to generate a variety of AU-FQ "hybrids" offering the potential for targeting two distinct steps in DNA replication. In this study, the properties of a hybrid, "251D," were compared with those of representative AUs and FQs in a variety of in vitro assays, including pol IIIC and topoisomerase/gyrase enzyme assays, antibacterial, bactericidal, and mammalian cytotoxicity assays.

View Article and Find Full Text PDF

Novel Gram-positive (Gram+) antibacterial compounds consisting of a DNA polymerase IIIC (pol IIIC) inhibitor covalently connected to a topoisomerase/gyrase inhibitor are described. Specifically, 3-substituted 6-(3-ethyl-4-methylanilino)uracils (EMAUs) in which the 3-substituent is a fluoroquinolone moiety (FQ) connected by various linkers were synthesized. The resulting "AU-FQ" hybrid compounds were significantly more potent than the parent EMAU compounds as inhibitors of pol IIIC and were up to 64-fold more potent as antibacterials in vitro against Gram+ bacteria.

View Article and Find Full Text PDF

Numerous 3-substituted-6-(3-ethyl-4-methylanilino)uracils (EMAU) have been synthesized and screened for their capacity to inhibit the replication-specific bacterial DNA polymerase IIIC (pol IIIC) and the growth of Gram+ bacteria in culture. Direct alkylation of 2-methoxy-6-amino-4-pyrimidone produced the N3-substituted derivatives, which were separated from the byproduct 4-alkoxy analogues. The N3-substituted derivatives were heated with a mixture of 3-ethyl-4-methylaniline and its hydrochloride to effect displacement of the 6-amino group and simultaneous demethylation of the 2-methoxy group to yield target compounds in good yields.

View Article and Find Full Text PDF

Mass spectrometry-based screening can be applied to a wide range of targets, including those intractable targets that use substrates such as lipids, fatty acids, phospholipids, steroids, prostaglandins, and other compounds not generally amenable to conventional screening techniques. The major limitation to this approach is throughput, making HTS via mass spectrometry impractical. We present a mass spectrometry-based technique and hardware for lead discovery applications.

View Article and Find Full Text PDF

Bacillus subtilis Bs gyrA and gyrB genes specifying the DNA gyrase subunits, and parC and parE genes specifying the DNA topoisomerase IV subunits, have been separately cloned and expressed in Escherichia coli as hexahistidine (his6)-tagged recombinant proteins. Purification of the gyrA and gyrB subunits together resulted in predominantly two bands at molecular weights of 94 and 73kDa; purification of the parC and parE subunits together resulted in predominantly two bands at molecular weights of 93 and 75kDa, as predicted by their respective sequences. The ability of the subunits to complement their partner was tested in an ATP-dependent decatenation/supercoiling assay system.

View Article and Find Full Text PDF

Enterococcus faecalis (Ef) dnaE and polC, the respective genes encoding the DNA replication-specific DNA polymerase III E and DNA polymerase III C, were cloned and engineered for expression in Escherichia coli as hexahistidine (his6)-tagged recombinant proteins. Each gene expressed a catalytically active DNA polymerase of the expected molecular weight. The recombinant polymerases were purified and each was characterized with respect to catalytic properties, inhibitor sensitivity, and recognition by specific antibody raised against the corresponding DNA polymerase III of the model Gram-positive (Gr(+)) organism, Bacillus subtilis (Bs).

View Article and Find Full Text PDF

The 6-anilinouracils (AUs) constitute a new class of bactericidal antibiotics selective against gram-positive (Gr(+)) organisms. The AU family of compounds specifically inhibits a novel target, replicative DNA polymerase Pol IIIC. Like other antibiotics, AUs can be expected to engender the development of resistant bacteria.

View Article and Find Full Text PDF