Publications by authors named "William A Chutkow"

The endoplasmic reticulum (ER) is responsible for protein folding, modification, and trafficking. Accumulation of unfolded or misfolded proteins represents the condition of ER stress and triggers the unfolded protein response (UPR), a key mechanism linking supply of excess nutrients to insulin resistance and type 2 diabetes in obesity. The ER harbors proteins that participate in protein folding including protein disulfide isomerases (PDIs).

View Article and Find Full Text PDF

Classic therapeutics for ischemic heart disease are less effective in individuals with the metabolic syndrome. As the prevalence of the metabolic syndrome is increasing, better understanding of cardiac metabolism is needed to identify potential new targets for therapeutic intervention. Thioredoxin-interacting protein (Txnip) is a regulator of metabolism and an inhibitor of the antioxidant thioredoxins, but little is known about its roles in the myocardium.

View Article and Find Full Text PDF

A human genome-wide linkage scan for obesity identified a linkage peak on chromosome 5q13-15. Positional cloning revealed an association of a rare haplotype to high body-mass index (BMI) in males but not females. The risk locus contains a single gene, "arrestin domain-containing 3" (ARRDC3), an uncharacterized α-arrestin.

View Article and Find Full Text PDF

Txnip (thioredoxin-interacting protein) is a critical mediator of metabolism and adipogenesis in vivo. The mechanisms of action of Txnip are believed to operate at least in part by inhibiting the redox signaling functions of thioredoxin. We tested here whether Txnip suppressed adipogenesis by inhibiting thioredoxin and discovered a reversal of roles; Txnip inhibits adipogenesis directly, and thioredoxin binding regulates Txnip by enhancing Txnip protein stability.

View Article and Find Full Text PDF

Objective: Thioredoxin interacting protein (Txnip), a regulator of cellular oxidative stress, is induced by hyperglycemia and inhibits glucose uptake into fat and muscle, suggesting a role for Txnip in type 2 diabetes pathogenesis. Here, we tested the hypothesis that Txnip-null (knockout) mice are protected from insulin resistance induced by a high-fat diet.

Research Design And Methods: Txnip gene-deleted (knockout) mice and age-matched wild-type littermate control mice were maintained on a standard chow diet or subjected to 4 weeks of high-fat feeding.

View Article and Find Full Text PDF

Thioredoxin-interacting protein (Txnip), originally characterized as an inhibitor of thioredoxin, is now known to be a critical regulator of glucose metabolism in vivo. Txnip is a member of the alpha-arrestin protein family; the alpha-arrestins are related to the classical beta-arrestins and visual arrestins. Txnip is the only alpha-arrestin known to bind thioredoxin, and it is not known whether the metabolic effects of Txnip are related to its ability to bind thioredoxin or related to conserved alpha-arrestin function.

View Article and Find Full Text PDF

Thioredoxin-interacting protein (Txnip) has been recently described as a possible link between cellular redox state and metabolism; Txnip binds thioredoxin and inhibits its disulfide reductase activity in vitro, while a naturally occurring strain of Txnip-deficient mice has hyperlipidemia, hypoglycemia, and ketosis exacerbated by fasting. We generated Txnip-null mice to investigate the role of Txnip in glucose homeostasis. Txnip-null mice were hypoglycemic, hypoinsulinemic, and had blunted glucose production following a glucagon challenge, consistent with a central liver glucose-handling defect.

View Article and Find Full Text PDF

Biomechanical overload induces cardiac hypertrophy and heart failure, and reactive oxygen species (ROS) play a role in both processes. Thioredoxin-Interacting Protein (Txnip) is encoded by a mechanically-regulated gene that controls cell growth and apoptosis in part through interaction with the endogenous dithiol antioxidant thioredoxin. Here we show that Txnip is a critical regulator of the cardiac response to pressure overload.

View Article and Find Full Text PDF

Background: Type 2 diabetes mellitus (T2DM) is characterized by defects in insulin secretion and action. Impaired glucose uptake in skeletal muscle is believed to be one of the earliest features in the natural history of T2DM, although underlying mechanisms remain obscure.

Methods And Findings: We combined human insulin/glucose clamp physiological studies with genome-wide expression profiling to identify thioredoxin interacting protein (TXNIP) as a gene whose expression is powerfully suppressed by insulin yet stimulated by glucose.

View Article and Find Full Text PDF

The thioredoxin system plays an important role in maintaining a reducing environment in the cell. Recently, several thioredoxin binding partners have been identified and proposed to mediate aspects of redox signaling, but the significance of these interactions is unclear in part due to incomplete understanding of the mechanism for thioredoxin binding. Thioredoxin-interacting protein (Txnip) is critical for regulation of glucose metabolism, the only currently known function of which is to bind and inhibit thioredoxin.

View Article and Find Full Text PDF

K(ATP) channels couple the intracellular energy state to membrane excitability and regulate a wide array of biologic activities. K(ATP) channels contain a pore-forming inwardly rectifying potassium channel and a sulfonylurea receptor regulatory subunit (SUR1 or SUR2). To clarify the role of K(ATP) channels in vascular smooth muscle, we studied Sur2 gene-targeted mice (Sur2(-/-)) and found significantly elevated resting blood pressures and sudden death.

View Article and Find Full Text PDF