Mammalian (Clade 3) catalases utilize NADPH as a protective cofactor to prevent one-electron reduction of the central reactive intermediate Compound I (Cpd I) to the catalytically inactive Compound II (Cpd II) species by re-reduction of Cpd I to the enzyme's resting state (ferricatalase). It has long been known that ascorbate/ascorbic acid is capable of reducing Cpd I of NADPH-binding catalases to Cpd II, but the mode of this one-electron reduction had hitherto not been explored. We here demonstrate that ascorbate-mediated reduction of Cpd I, generated by addition of peroxoacetic acid to NADPH-free bovine liver catalase (BLC), requires specific binding of the ascorbate anion to the NADPH binding pocket.
View Article and Find Full Text PDFX-ray structures of the 13 different monofunctional heme catalases published to date were scrutinized in order to gain insight in the mechanism by which NADPH in Clade 3 catalases may protect the reactive ferryloxo intermediate Compound I (Cpd I; por (*+)Fe (IV)O) against deactivation to the catalytically inactive intermediate Compound II (Cpd II; porFe (IV)O). Striking similarities in the molecular network of the protein subunits encompassing the heme center and the surface-bound NADPH were found for all of the Clade 3 catalases. Unique features in this region are the presence of a water molecule (W1) adjacent to the 4-vinyl group of heme and a serine residue or a second water molecule hydrogen-bonded to both W1 and the carbonyl group of a threonine-proline linkage, with the proline in van der Waals contact with the dihydronicotinamide group of NADPH.
View Article and Find Full Text PDFNon-heme iron(III) complexes of 14-membered tetraaza macrocycles have previously been found to catalytically decompose hydrogen peroxide to water and molecular oxygen, like the native enzyme catalase. Here the mechanism of this reaction is theoretically investigated by DFT calculations at the (U)B3LYP/6-31G* level, with focus on the reactivity of the possible spin states of the FeIII complexes. The computations suggest that H2O2 decomposition follows a homolytic route with intermediate formation of an iron(IV) oxo radical cation species (L.
View Article and Find Full Text PDFAcyclic receptors containing neutral hydrogen bonding sites, such as amino-pyridine groups and a crown unit, perform effective recognition of neutral sugar molecules through multiple interactions. Receptor 1 has been shown to be a particularly effective and highly selective receptor for beta-glucopyranoside.
View Article and Find Full Text PDFThe cycloaddition of thiobenzophenone S-methylide to thiobenzophenone, an experimentally well-known reaction, was studied, using (U)HF/3-21G* for finding stationary points and (U)B3LYP/6-31G*//(U)HF/3-21G* single-point calculations for energies. Some optimizations were performed by (U)B3LYP/ 6-31G* to check the reliability of the calculations. The comparison of the concerted pathways and stepwise reactions via C,C-biradicals and C,S-zwitterions showed that the formation of a tetraphenyl-substituted C,C-biradical and its ring closure to 4,4,5,5-tetraphenyl-1,3-dithiolane constitutes the energetically most probable pathway of product formation, despite the fact that the regioisomeric 2,2,4,4-tetraphenyl-substituted product is more favorable by 17 kcal mol(-1).
View Article and Find Full Text PDFThe mechanisms of cycloaddition of thioformaldehyde S-methylide and thioacetone S-methylide, as models for an alkyl-substituted ylide, to thioformaldehyde and thioacetone, as well as to ethene as a model for a C=C double bond have been studied by ab initio calculations. Restricted and unrestricted B3LYP/6-31G* calculations were performed for the geometries of ground states, transition structures, and intermediates. Although basis sets with more polarization functions were tested, the 6-31G* basis set was applied throughout.
View Article and Find Full Text PDF[structure: see text] New effective, acyclic, pyridine-based receptors 1-3 show remarkable alpha/beta binding selectivity in the recognition of monosaccharides. They are able to participate in cooperative and bidentate hydrogen bonds with sugar hydroxyls as well as in CH-pi interactions with CH's of sugar molecules.
View Article and Find Full Text PDF