In measuring cerebral blood flow (CBF) noninvasively using optical techniques, diffusing-wave spectroscopy is often combined with near-infrared spectroscopy to obtain a reliable blood flow index. Measuring the blood flow index at a determined depth remains the ultimate goal. In this study, we present a simple approach using dual-comb lasers where we simultaneously measure the absorption coefficient (μ), the reduced scattering coefficient (μ ), and dynamic properties.
View Article and Find Full Text PDFDual-comb spectroscopy (DCS) enables high-resolution measurements at high speeds without the trade-off between resolution and update rate inherent to mechanical delay scanning. However, high complexity and limited sensitivity remain significant challenges for DCS systems. We address these via a wavelength-tunable dual-comb optical parametric oscillator (OPO) combined with an up-conversion detection method.
View Article and Find Full Text PDFIntroduction: Successful diabetes reversal using pancreatic islet transplantation by various groups illustrates the significant achievements made in cell-based diabetes therapy. While clinically, intraportal islet delivery is almost exclusively used, it is not without obstacles, including instant blood-mediated inflammatory reaction (IBMIR), relative hypoxia, and loss of function over time, therefore hindering long-term success. Here we demonstrate the perihepatic surface of non-human primates (NHPs) as a potential islet delivery site maximizing favorable characteristics, including proximity to a dense vascular network for adequate oxygenation while avoiding IBMIR exposure, maintenance of portal insulin delivery, and relative ease of accessibility through minimally invasive surgery or percutaneous means.
View Article and Find Full Text PDFWe investigate terahertz time-domain spectroscopy using a low-noise dual-frequency-comb laser based on a single spatially multiplexed laser cavity. The laser cavity includes a reflective biprism, which enables generation of a pair of modelocked output pulse trains with slightly different repetition rates and highly correlated noise characteristics. These two pulse trains are used to generate the THz waves and detect them by equivalent time sampling.
View Article and Find Full Text PDFPropylene glycol (PG) demonstrates greater efficacy than other sugar polyols. However, the attributes it confers for toxicity and possible co-formulation with other ingredients are unknown. To evaluate this, α-glucosidase and glucose oxidase reactions were performed in Aedes aegypti (L.
View Article and Find Full Text PDFDual-comb microscopy enables high-speed and high-precision optical sampling by simultaneously extracting both amplitude and phase information from the interference signals with frequency division multiplexing. In this Letter, we introduce a spatiotemporal encoding approach for dual-comb microscopy that overcomes previous limitations such as mechanical scanning, low sampling efficiency, and system complexity. By employing free-space angular-chirp-enhanced delay (FACED) and a low-noise single-cavity dual-comb laser, we achieve scan-less 3D imaging with nanometer precision and a 3D distance-imaging rate of 330 Hz, restricted only by the repetition rate difference of the dual-comb laser.
View Article and Find Full Text PDFCell-based therapies hold promise for many chronic conditions; however, the continued need for immunosuppression along with challenges in replacing cells to improve durability or retrieving cells for safety are major obstacles. We subcutaneously implanted a device engineered to exploit the innate transcapillary hydrostatic and colloid osmotic pressure generating ultrafiltrate to mimic interstitium. Long-term stable accumulation of ultrafiltrate was achieved in both rodents and nonhuman primates (NHPs) that was chemically similar to serum and achieved capillary blood oxygen concentration.
View Article and Find Full Text PDFDual-comb lasers are a new class of ultrafast lasers that enable fast, accurate and sensitive measurements without any mechanical delay lines. Here, we demonstrate a 2-µm laser called MIXSEL (Modelocked Integrated eXternal-cavity Surface Emitting Laser), based on an optically pumped passively modelocked semiconductor thin disk laser. Using III-V semiconductor molecular beam epitaxy, we achieve a center wavelength in the shortwave infrared (SWIR) range by integrating InGaSb quantum well gain and saturable absorber layers onto a highly reflective mirror.
View Article and Find Full Text PDFVector-borne diseases transmitted through the bites of hematophagous arthropods, such as mosquitoes, continue to be a significant threat to human health globally. Transmission of disease by biting arthropod vectors includes interactions between (1) saliva expectorated by a vector during blood meal acquisition from a human host, (2) the transmitted vector-borne pathogens, and (3) host cells present at the skin bite site. Currently, the investigation of bite-site biology is challenged by the lack of model 3D human skin tissues for in vitro analyses.
View Article and Find Full Text PDFThis erratum corrects a typographical error in equation (8) of our published paper [Opt. Express31, 7103 (2023)10.1364/OE.
View Article and Find Full Text PDFWe present a new type of dual optical frequency comb source capable of scaling applications to high measurement speeds while combining high average power, ultra-low noise operation, and a compact setup. Our approach is based on a diode-pumped solid-state laser cavity which includes an intracavity biprism operated at Brewster angle to generate two spatially-separated modes with highly correlated properties. The 15-cm-long cavity uses an Yb:CALGO crystal and a semiconductor saturable absorber mirror as an end mirror to generate more than 3 W average power per comb, below 80 fs pulse duration, a repetition rate of 1.
View Article and Find Full Text PDFSingle-cavity dual-combs comprise a rapidly emerging technology platform suitable for a wide range of applications like optical ranging, equivalent time sampling, and spectroscopy. However, it remains a challenging task to develop a dual-comb system that exhibits low relative frequency fluctuations to allow for comb line resolved measurements, while simultaneously offering high average power and short pulse durations. Here we combine a passively cooled and compact dual-comb solid-state oscillator with a pair of core-pumped Yb-fiber-based amplifiers in a master-oscillator power-amplifier (MOPA) architecture.
View Article and Find Full Text PDFSpatial repellents are emerging as a promising approach to reduce vector-disease burden; however, the evolution of genetically resistant mosquitoes decreases repellent efficacy. The development of flight chambers to investigate spatial repellent application techniques is vital for sustainable mosquito control. We present an air-dilution chamber as a novel bioassay to study mosquito flight behavior responses to chemical gradients of the volatile, pyrethroid transfluthrin (TF).
View Article and Find Full Text PDFUltrafast pump-probe measurements are used to characterize various samples, such as biological cells, bulk, and thin-film structures. However, typical implementations of the pump-probe apparatus are either slow or complex and costly hindering wide deployment. Here we combine a single-cavity dual-comb laser with a simple experimental setup to obtain pump-probe measurements with ultra-high sensitivity, fast acquisition, and high timing precision over long optical delay scan ranges of 12.
View Article and Find Full Text PDFLong-distance ranging is a crucial tool for both industrial and scientific applications. Laser-based distance metrology offers unprecedented precision making it the ideal approach for many deployments. In particular, dual-comb ranging is favorable due to its inherently high precision and sampling rate.
View Article and Find Full Text PDFWe demonstrate a free-running single-cavity dual-comb optical parametric oscillator (OPO) pumped by a single-cavity dual-comb solid-state laser. The OPO ring cavity contains a single periodically-poled MgO-doped LiNbO (PPLN) crystal. Each idler beam has more than 245-mW average power at 3550 nm and 3579 nm center wavelengths (bandwidth 130 nm).
View Article and Find Full Text PDFThree-dimensional (3D) printing has great potential for creating tissues and organs to meet shortfalls in transplant supply, and biomaterial inks are key components of many such approaches. There is a need for biomaterial inks that facilitate integration, infiltration, and vascularization of targeted 3D-printed structures. This study is therefore focused on creating new biomaterial inks from self-assembled capillary alginate gel (Capgel), which possesses a unique microstructure of uniform tubular channels with tunable diameters and densities.
View Article and Find Full Text PDFPulse trains emitted from dual-comb systems are designed to have low relative timing jitter, making them useful for many optical measurement techniques such as optical ranging and spectroscopy. However, the characterization of low-jitter dual-comb systems is challenging because it requires measurement techniques with high sensitivity. Motivated by this challenge, we developed a technique based on an optical heterodyne detection approach for measuring the relative timing jitter of two pulse trains.
View Article and Find Full Text PDFSemiconductor saturable absorber mirrors (SESAMs) have enabled a wide variety of modelocked laser systems, which makes measuring their nonlinear properties an important step in laser design. Here, we demonstrate complete characterization of SESAMs using an equivalent time sampling apparatus. The light source is a free-running dual-comb laser, which produces a pair of sub-150-fs modelocked laser outputs at 1051 nm from a single cavity.
View Article and Find Full Text PDFWe present a free-running 80-MHz dual-comb polarization-multiplexed solid-state laser which delivers 1.8 W of average power with 110-fs pulse duration per comb. With a high-sensitivity pump-probe setup, we apply this free-running dual-comb laser to picosecond ultrasonic measurements.
View Article and Find Full Text PDFLaser ranging (LIDAR) with dual optical frequency combs enables high-resolution distance measurements over long ranges with fast update rates. However, the high complexity of stabilized dual optical frequency comb systems makes it challenging to use this technique in industrial applications. To address this issue, here we demonstrate laser ranging directly from the output of both a free-running dual-comb diode-pumped semiconductor and solid-state laser oscillator.
View Article and Find Full Text PDFDual optical frequency combs are an appealing solution to many optical measurement techniques due to their high spectral and temporal resolution, high scanning speed, and lack of moving parts. However, industrial and field-deployable applications of such systems are limited due to a high-cost factor and intricacy in the experimental setups, which typically require a pair of locked femtosecond lasers. Here, we demonstrate a single oscillator which produces two mode-locked output beams with a stable repetition rate difference.
View Article and Find Full Text PDFIn this experimental study we film the landings of Aedes aegypti mosquitoes to characterize landing behaviors and kinetics, limitations, and the passive physiological mechanics they employ to land on a vertical surface. A typical landing involves 1-2 bounces, reducing inbound momentum by more than half before the mosquito firmly attaches to a surface. Mosquitoes initially approach landing surfaces at 0.
View Article and Find Full Text PDFEffectively controlling vector mosquito populations while avoiding the development of resistance remains a prevalent and increasing obstacle to integrated vector management. Although, metallic nanoparticles have previously shown promise in controlling larval populations via mechanisms which are less likely to spur resistance, the impacts of such particles on life history traits and fecundity of mosquitoes are understudied. Herein, we investigate the chemically well-defined cerium oxide nanoparticles (CNPs) and silver-doped nanoceria (AgCNPs) for larvicidal potential and effects on life history traits and fecundity of Aedes (Ae.
View Article and Find Full Text PDF