Publications by authors named "Willemijn Groenendaal"

Repeated single-point measurements of thoracic bioimpedance at a single (low) frequency are strongly related to fluid changes during hemodialysis. Extension to semi-continuous measurements may provide longitudinal details in the time pattern of the bioimpedance signal, and multi-frequency measurements may add in-depth information on the distribution between intra- and extracellular fluid. This study aimed to investigate the feasibility of semi-continuous multi-frequency thoracic bioimpedance measurements by a wearable device in hemodialysis patients.

View Article and Find Full Text PDF

In contrast to whole body bioimpedance, which estimates fluid status at a single point in time, thoracic bioimpedance applied by a wearable device could enable continuous measurements. However, clinical experience with thoracic bioimpedance in patients on dialysis is limited. To test the reproducibility of whole body and thoracic bioimpedance measurements and to compare their relationship with hemodynamic changes during hemodialysis, these parameters were measured pre- and end-dialysis in 54 patients during two sessions.

View Article and Find Full Text PDF

Breathing pattern has been shown to be different in chronic obstructive pulmonary disease (COPD) patients compared to healthy controls during rest and walking. In this study we evaluated respiratory parameters and the breathing variability of COPD patients as a function of their severity. Thoracic bioimpedance was acquired on 66 COPD patients during the performance of the six-minute walk test (6MWT), as well as 5 minutes before and after the test while the patients were seated, i.

View Article and Find Full Text PDF

Although sleep apnea is one of the most prevalent sleep disorders, most patients remain undiagnosed and untreated. The gold standard for sleep apnea diagnosis, polysomnography, has important limitations such as its high cost and complexity. This leads to a growing need for novel cost-effective systems.

View Article and Find Full Text PDF

Wearable bioimpedance is a technique proposed to estimate breathing parameters such as respiratory rate (RR). However, its potential application lies in clinical investigation of daily-life activities like walking. This study evaluated the effect of the walking interference on the estimation of breathing parameters.

View Article and Find Full Text PDF

Background And Objective: Chronic obstructive pulmonary disease (COPD) requires a multifactorial assessment, evaluating the airflow limitation and symptoms of the patients. The 6-min walk test (6MWT) is commonly used to evaluate the functional exercise capacity in these patients. This study aims to propose a novel predictive model of the major 6MWT outcomes for COPD assessment, without physical performance measurements.

View Article and Find Full Text PDF

Changes in respiratory rate have been found to be one of the early signs of health deterioration in patients. In remote environments where diagnostic tools and medical attention are scarce, such as deep space exploration, the monitoring of the respiratory signal becomes crucial to timely detect life-threatening conditions. Nowadays, this signal can be measured using wearable technology; however, the use of such technology is often hampered by the low quality of the recordings, which leads more often to wrong diagnosis and conclusions.

View Article and Find Full Text PDF

Many studies have focused on novel noninvasive techniques to monitor respiratory rate such as bioimpedance. We propose an algorithm to detect respiratory phases using wearable bioimpedance to compute time parameters like respiratory rate, inspiratory and expiratory times, and duty cycle. The proposed algorithm was compared with two other algorithms from literature designed to estimate the respiratory rate using physiological signals like bioimpedance.

View Article and Find Full Text PDF

Respiratory sinus arrhythmia (RSA) is a form of cardiorespiratory coupling. Its quantification has been suggested as a biomarker to diagnose different diseases. Two state-of-the-art methods, based on subspace projections and entropy, are used to estimate the RSA strength and are evaluated in this paper.

View Article and Find Full Text PDF

Currently, nearly 6 in 10 US adults are suffering from at least one chronic condition. Wearable technology could help in controlling the health care costs by remote monitoring and early detection of disease worsening. However, in recent years, there have been disappointments in wearable technology with respect to reliability, lack of feedback, or lack of user comfort.

View Article and Find Full Text PDF

Impedance pneumography has been suggested as an ambulatory technique for the monitoring of respiratory diseases. However, its ambulatory nature makes the recordings more prone to noise sources. It is important that such noisy segments are identified and removed, since they could have a huge impact on the performance of data-driven decision support tools.

View Article and Find Full Text PDF

Bioimpedance spectroscopy (BIS) has proven to be a promising non-invasive technique for fluid monitoring in haemodialysis (HD) patients. While current BIS-based monitoring of pre- and post-dialysis fluid status utilizes benchtop devices, designed for intramural use, advancements in micro-electronics have enabled the development of wearable bioimpedance systems. Wearable systems meanwhile can offer a similar frequency range for current injection as commercially available benchtop devices.

View Article and Find Full Text PDF

Reliable and diverse labeled reference data are essential for the development of high-quality processing algorithms for medical signals, such as electrocardiogram (ECG) and photoplethysmogram (PPG). Here, we present the Platform for Analysis and Labeling of Medical time Series (PALMS) designed in Python. Its graphical user interface (GUI) facilitates three main types of manual annotations-(1) fiducials, e.

View Article and Find Full Text PDF

Cardiac rehabilitation (CR) is a highly recommended secondary prevention measure for patients with diagnosed cardiovascular disease. Unfortunately, participation rates are low due to enrollment and adherence issues. As such, new CR delivery strategies are of interest, as to improve overall CR delivery.

View Article and Find Full Text PDF

Chronic Obstructive Pulmonary Disease (COPD) is one of the most common chronic conditions. The current assessment of COPD requires a maximal maneuver during a spirometry test to quantify airflow limitations of patients. Other less invasive measurements such as thoracic bioimpedance and myographic signals have been studied as an alternative to classical methods as they provide information about respiration.

View Article and Find Full Text PDF

Background: Haemodialysis (HD) patients are burdened by frequent fluid shifts which amplify their comorbidities. Bioimpedance (bioZ) is a promising technique to monitor changes in fluid status. The aim of this study is to investigate if the thoracic bioZ signal can track fluid changes during a HD session.

View Article and Find Full Text PDF

Cardiovascular diseases (CVD) are often characterized by their multifactorial complexity. This makes remote monitoring and ambulatory cardiac rehabilitation (CR) therapy challenging. Current wearable multimodal devices enable remote monitoring.

View Article and Find Full Text PDF

Background: Cardiac rehabilitation (CR) is known for its beneficial effects on functional capacity and is a key component within current cardiovascular disease management strategies. In addition, a larger increase in functional capacity is accompanied by better clinical outcomes. However, not all patients respond in a similar way to CR.

View Article and Find Full Text PDF

Background: Incomplete relief of congestion in acute decompensated heart failure (HF) is related to poor outcomes. However, congestion can be difficult to evaluate, stressing the urgent need for new objective approaches. Due to its inverse correlation with tissue hydration, continuous bioimpedance monitoring might be an effective method for serial fluid status assessments.

View Article and Find Full Text PDF

Sleep apnea is one of the most common sleep-related breathing disorders. It is diagnosed through an overnight sleep study in a specialized sleep clinic. This setup is expensive and the number of beds and staff are limited, leading to a long waiting time.

View Article and Find Full Text PDF

Bioimpedance is known for its linear relation with volume during normal breathing. For that reason, bioimpedance can be used as a noninvasive and comfortable technique for measuring respiration. The goal of this study is to analyze the temporal behavior of bioimpedance measured in four different electrode configurations during inspiratory loaded breathing.

View Article and Find Full Text PDF

Bioimpedance has been widely studied as alternative to respiratory monitoring methods because of its linear relationship with respiratory volume during normal breathing. However, other body tissues and fluids contribute to the bioimpedance measurement. The objective of this study is to investigate the relevance of chest movement in thoracic bioimpedance contributions to evaluate the applicability of bioimpedance for respiratory monitoring.

View Article and Find Full Text PDF

Long-term heart rate (HR) monitoring by wrist-worn photoplethysmograph (PPG) sensors enables the assessment of health conditions during daily life with high user comfort. However, PPG signals are vulnerable to motion artifacts (MAs), which significantly affect the accuracy of estimated physiological parameters such as HR. This paper proposes a novel modular algorithm framework for MA removal based on different wavelengths for wrist-worn PPG sensors.

View Article and Find Full Text PDF

Sleep apnea is one of the most common sleep disorders and the consequences of undiagnosed sleep apnea can be very severe, ranging from increased blood pressure to heart failure. However, many people are often unaware of their condition. The gold standard for diagnosing sleep apnea is an overnight polysomnography in a dedicated sleep laboratory.

View Article and Find Full Text PDF

Sleep apnea is one of the most common sleep disorders. It is characterized by the cessation of breathing during sleep due to airway blockages (obstructive sleep apnea) or disturbances in the signals from the brain (central sleep apnea). The gold standard for diagnosing sleep apnea is performing an overnight polysomnography recording which contains, among others, a wide array of respiratory signals.

View Article and Find Full Text PDF