Publications by authors named "Willem jan Keune"

Autotaxin (ATX) is a secreted glycoprotein and the only member of the ectonucleotide pyrophosphatase/phosphodiesterase family that converts lysophosphatidylcholine (LPC) into lysophosphatidic acid (LPA). LPA controls key responses, such as cell migration, proliferation, and survival, implicating ATX-LPA signaling in various (patho)physiological processes and establishing it as a drug target. ATX structural and functional studies have revealed an orthosteric and an allosteric site, called the "pocket" and the "tunnel," respectively.

View Article and Find Full Text PDF

Autophagy is an evolutionarily conserved process that degrades cellular components to restore energy homeostasis under limited nutrient conditions. How this starvation-induced autophagy is regulated at the whole-body level is not fully understood. Here, we show that the tumor suppressor Lkb1, which activates the key energy sensor AMPK, also regulates starvation-induced autophagy at the organismal level.

View Article and Find Full Text PDF

Autotaxin produces the bioactive lipid lysophosphatidic acid (LPA) and is a drug target of considerable interest for numerous pathologies. We report the expedient, structure-guided evolution of weak physiological allosteric inhibitors (bile salts) into potent competitive Autotaxin inhibitors that do not interact with the catalytic site. Functional data confirms that our lead compound attenuates LPA mediated signaling in cells and reduces LPA synthesis in vivo, providing a promising natural product derived scaffold for drug discovery.

View Article and Find Full Text PDF

Autotaxin (ATX) is a secreted enzyme responsible for the hydrolysis of lysophosphatidylcholine (LPC) to the bioactive lysophosphatidic acid (LPA) and choline. The ATX-LPA signaling pathway is implicated in cell survival, migration, and proliferation; thus, the inhibition of ATX is a recognized therapeutic target for a number of diseases including fibrotic diseases, cancer, and inflammation, among others. Many of the developed synthetic inhibitors for ATX have resembled the lipid chemotype of the native ligand; however, a small number of inhibitors have been described that deviate from this common scaffold.

View Article and Find Full Text PDF

Autotaxin (ATX) is a secreted phosphodiesterase that produces the signalling lipid lysophosphatidic acid (LPA). The bimetallic active site of ATX is structurally related to the alkaline phosphatase superfamily. Here, we present a new crystal structure of ATX in complex with orthovanadate (ATX-VO5), which binds the Oγ nucleophile of Thr209 and adopts a trigonal bipyramidal conformation, following the nucleophile attack onto the substrate.

View Article and Find Full Text PDF

Autotaxin (ATX) generates the lipid mediator lysophosphatidic acid (LPA). ATX-LPA signalling is involved in multiple biological and pathophysiological processes, including vasculogenesis, fibrosis, cholestatic pruritus and tumour progression. ATX has a tripartite active site, combining a hydrophilic groove, a hydrophobic lipid-binding pocket and a tunnel of unclear function.

View Article and Find Full Text PDF

Phosphatidylinositol-5-phosphate (PtdIns5P)-4-kinases (PIP4Ks) are stress-regulated lipid kinases that phosphorylate PtdIns5P to generate PtdIns(4,5)P₂. There are three isoforms of PIP4Ks: PIP4K2A, 2B and 2C, which localise to different subcellular compartments with the PIP4K2B isoform being localised predominantly in the nucleus. Suppression of PIP4K expression selectively prevents tumour cell growth in vitro and prevents tumour development in mice that have lost the tumour suppressor p53.

View Article and Find Full Text PDF

Glucose provides an essential nutrient source that supports glycolysis and the hexosamine biosynthesis pathway (HBP) to maintain tumour cell growth and survival. Here we investigated if short-term glucose deprivation specifically modulates the phosphatidylinositol 3-kinase/protein kinase B (PI3K/PKB) cell survival pathway. Insulin-stimulated PKB activation was strongly abrogated in the absence of extracellular glucose as a consequence of the loss of insulin-stimulated PI3K activation and short-term glucose deprivation inhibited subsequent tumour cell growth.

View Article and Find Full Text PDF

Phosphatidylinositol-5-phosphate (PtdIns5P) 4-kinase β (PIP4K2B) directly regulates the levels of two important phosphoinositide second messengers, PtdIns5P and phosphatidylinositol-(4,5)-bisphosphate [PtdIns(4,5)P2]. PIP4K2B has been linked to the regulation of gene transcription, to TP53 and AKT activation, and to the regulation of cellular reactive oxygen accumulation. However, its role in human tumor development and on patient survival is not known.

View Article and Find Full Text PDF

The spatial and temporal regulation of the second messenger PtdIns(4,5)P2 has been shown to be crucial for regulating numerous processes in the cytoplasm and in the nucleus. Three isoforms of PIP5K1 (phosphatidylinositol 4-phosphate 5-kinase), A, B and C, are responsible for the regulation of the major pools of cellular PtdIns(4,5)P2. PIP5K1B is negatively regulated in response to oxidative stress although it remains unclear which pathways regulate its activity.

View Article and Find Full Text PDF

Oxidative signaling is important in cellular health, involved in aging and contributes to the development of several diseases such as cancer, neurodegeneration and diabetes. Correct management of reactive oxygen species (ROS) prevents oxidative stress within cells and is imperative for cellular wellbeing. A key pathway that is regulated by oxidative stress is the activation of proline-directed stress kinases (p38, JNK).

View Article and Find Full Text PDF

Oxidative stress initiates signaling pathways, which protect from stress-induced cellular damage, initiate apoptosis, or drive cells into senescence or into tumorigenesis. Oxidative stress regulates the activity of the cell survival factor PKB, through the regulation of PtdIns(3,4,5)P₃ synthesis. Whether oxidative stress regulates other phosphoinositides to control PKB activation is not clear.

View Article and Find Full Text PDF

Oxidative signaling and oxidative stress contribute to aging, cancer, and diseases resulting from neurodegeneration. Pin1 is a proline isomerase that recognizes phosphorylated substrates and regulates the localization and conformation of its targets. Pin1(-/-) mice show phenotypes associated with premature aging, yet mouse embryonic fibroblasts (MEFs) from these mice are resistant to hydrogen peroxide (H(2)O(2))-induced cell death.

View Article and Find Full Text PDF

Lipid signalling in human disease is an important field of investigation and stems from the fact that phosphoinositide signalling has been implicated in the control of nearly all the important cellular pathways including metabolism, cell cycle control, membrane trafficking, apoptosis and neuronal conduction. A distinct nuclear inositide signalling metabolism has been identified, thus defining a new role for inositides in the nucleus, which are now considered essential co-factors for several nuclear processes, including DNA repair, transcription regulation, and RNA dynamics. Deregulation of phoshoinositide metabolism within the nuclear compartment may contribute to disease progression in several disorders, such as chronic inflammation, cancer, metabolic, and degenerative syndromes.

View Article and Find Full Text PDF

In N1E-115 cells, neurite retraction induced by neurite remodelling factors such as lysophosphatidic acid, sphingosine 1-phosphate and semaphorin 3A require the activity of phosphatidylinositol 4-phosphate 5-kinases (PIP5Ks). PIP5Ks synthesise the phosphoinositide lipid second messenger phosphatidylinositol(4,5)bisphosphate [PtdIns(4,5)P₂], and overexpression of active PIP5K is sufficient to induce neurite retraction in both N1E-115 cells and cerebellar granule neurones. However, how PIP5Ks are regulated or how they induce neurite retraction is not well defined.

View Article and Find Full Text PDF

The beta-isoform of PIP4K (PtdIns5P-4-kinase) regulates the levels of nuclear PtdIns5P, which in turn modulates the acetylation of the tumour suppressor p53. The crystal structure of PIP4Kbeta demonstrated that it can form a homodimer with the two subunits arranged in opposite orientations. Using MS, isoform-specific antibodies against PIP4Ks, RNAi (RNA interference) suppression and overexpression studies, we show that PIP4Kbeta interacts in vitro and in vivo with the PIP4Kalpha isoform.

View Article and Find Full Text PDF

Phosphatidylinositol (PtdIns) and its phosphorylated derivatives represent less than 5% of total membrane phospholipids in cells. Despite their low abundance, they form a dynamic signaling system that is regulated in response to a variety of extra- and intracellular cues. Protein domains including PH, FYVE, ENTH, PHOX, PHD fingers, and lysine-/arginine-rich patches can bind to specific phosphoinositide isomers, which, in turn, can induce changes in the subcellular localization, posttranslational modification, protein interaction partners, or activity of the protein containing such a domain.

View Article and Find Full Text PDF

Inhibitor of growth protein-2 (ING2) is a nuclear adaptor protein that can regulate p53 and histone acetylation in response to cellular stress and contains a PHD (plant homeodomain) finger that can interact with phosphatidylinositol-5-phosphate (PtdIns5P). However, whether or how nuclear PtdIns5P levels are regulated in response to cellular stress or whether ING2 can sense these changes has not been demonstrated. We show that UV irradiation increases nuclear PtdIns5P levels via inhibition of the activity of the beta isoform of PtdIns5P 4-kinase (PIP4Kbeta), an enzyme that can phosphorylate and remove PtdIns5P.

View Article and Find Full Text PDF

Background: Transcriptionally active high-risk human papilloma viruses (HPVs), particularly HPV type 16 (HPV16), are found in a subset of head and neck squamous-cell carcinomas (HNSCCs). HPV16-associated carcinogenesis is mediated by expression of the viral E6 and E7 oncoproteins, which cause deregulation of the cell cycle by inactivating p53 and pRb, respectively. We tested the hypothesis that HPV-associated HNSCCs display a pattern of genetic alterations different from those of HNSCCs without HPV DNA.

View Article and Find Full Text PDF