We describe furan as a triggerable 'warhead' for site-specific cross-linking using the actin and thymosin β4 (Tβ4)-complex as model of a weak and dynamic protein-protein interaction (PPI) with known 3D structure and with application potential in disease contexts. The identified cross-linked residues demonstrate that lysine is a target for the furan warhead. The presented in vitro validation of covalently acting 'furan-armed' Tβ4-variants provides initial proof to further exploit furan-technology for covalent drug design targeting lysines.
View Article and Find Full Text PDFDuring lateral root initiation, lateral root founder cells undergo asymmetric cell divisions that generate daughter cells with different sizes and fates, a prerequisite for correct primordium organogenesis. An excess of the GLV6/RGF8 peptide disrupts these initial asymmetric cell divisions, resulting in more symmetric divisions and the failure to achieve lateral root organogenesis. Here, we show that loss-of-function GLV6 and its homologue GLV10 increase asymmetric cell divisions during lateral root initiation, and we identified three members of the RGF1 INSENSITIVE/RGF1 receptor subfamily as likely GLV receptors in this process.
View Article and Find Full Text PDFInteractions between G protein-coupled receptors and their ligands hold extensive potential for drug discovery. Studying these interactions poses technical problems due to their transient nature and the inherent difficulties when working with G protein-coupled receptors (GPCR) that are only functional in a membrane setting. Here, we describe the use of a furan-based chemical cross-linking methodology to achieve selective covalent coupling between a furan-modified peptide ligand and its native GPCR present on the surface of living cells under normal cell culture conditions.
View Article and Find Full Text PDFFlexible in vitro translation (FIT) was used as a screening method to uncover a new methodology for peptide constraining based on the attack of a nucleophilic side-chain functionality onto an oxidized furylalanine side chain. A set of template peptides, each containing furylalanine as furan-modified amino acid and a nucleophilic residue (Cys, His, Lys, Arg, Ser, or Tyr), was produced through FIT. The translation mixtures were treated with -bromosuccinimide (NBS) to achieve selective furan oxidation and subsequent MALDI analysis demonstrated Lys and Ser as promising residues for cyclisation.
View Article and Find Full Text PDFMethodologies to conjugate proteins to property-enhancing entities are highly sought after. We report a remarkably simple strategy for conjugating proteins bearing accessible cysteines to unprotected peptides containing a Cys(Scm) protecting group, which is introduced on-resin via a Cys(Acm) building block. The peptides employed for this proof of principle study are highly varied and structurally diverse, and undergo multiple on-resin decoration steps prior to conjugation.
View Article and Find Full Text PDFChemical cross-linking is well-established for investigating protein-protein interactions. Traditionally, photo cross-linking is used but is associated with problems of selectivity and UV toxicity in a biological context. We here describe, with live cells and under normal growth conditions, selective cross-linking of a furan-modified peptide ligand to its membrane-presented receptor with zero toxicity, high efficiency, and spatio-specificity.
View Article and Find Full Text PDF