Publications by authors named "Willem Schoonen"

The zebrafish embryo toxicity test (ZFET) is a simple medium-throughput test to inform about (sub)acute lethal effects in embryos. Enhanced analysis through morphological and teratological scoring, and through gene expression analysis, detects developmental effects and the underlying toxicological pathways. Altogether, the ZFET may inform about hazard of chemical exposure for embryonal development in humans, as well as for lethal effects in juvenile and adult fish.

View Article and Find Full Text PDF

Knowledge on mode-of-action (MOA) is required to understand toxicological effects of compounds, notably in the context of risk assessment of mixtures. Such information is generally scarce, and often complicated by the existence of multiple MOAs per compound. Here, MOAs related to developmental craniofacial malformations were derived from literature, and assembled in a MOA network.

View Article and Find Full Text PDF

Mode of action information is one of the key components for chemical risk assessment as mechanistic insight leads to better understanding of potential adverse health effects of a chemical. This insight greatly facilitates assessment of human relevance and enhances the use of non-animal methods for risk assessment, as it ultimately enables extrapolation from initiating events to adverse effects. Recently, we reported an in vitro toxicogenomics comparison approach to categorize (non-)genotoxic carcinogens according to similarities in their proposed modes of action.

View Article and Find Full Text PDF

Blood sampling during juvenile rat toxicology studies is required to determine the toxicokinetic (TK) profile of compounds. Juvenile rats are too small to undergo repeated blood sampling using conventional methods, which collect 200-300 μl blood at each time point. Recently, capillary microsampling (CMS) gained interest because sample sizes are almost 10 times smaller enabling multi-sample collection from 1 rat.

View Article and Find Full Text PDF

In rat in vivo, both paracetamol (APAP) and carbon tetrachloride (CCl4) induce liver necrosis, but long-term treatment with CCl4, in contrast to paracetamol, causes liver fibrosis. The aim of this study was to perform transcriptomic analysis to compare the early changes in mRNA expression profiles induced by APAP and CCl4 in the rat precision-cut liver slice model (PCLS) and to identify early markers that could predict fibrosis-inducing potential. Microarray data of rat PCLS exposed to APAP andCCl4was generated using a toxic dose based on decrease in ATP levels.

View Article and Find Full Text PDF

Most of the current in vitro carcinogenicity assays assess the potential carcinogenic properties of chemicals through the detection of inflicted DNA damage or subsequent chromosome damage and gene mutations. Unfortunately, these assays generally do not provide mechanistic insight into the reactive properties of a chemical. Upon chemical-induced damage of biomolecules, molecular sensors will activate general and damage-specific cellular response pathways that provide protection against the (geno)toxic and potential carcinogenic properties of chemicals.

View Article and Find Full Text PDF

Glucocorticoids (GCs) such as prednisolone are potent immunosuppressive drugs but suffer from severe adverse effects, including the induction of insulin resistance. Therefore, development of so-called Selective Glucocorticoid Receptor Modulators (SGRM) is highly desirable. Here we describe a non-steroidal Glucocorticoid Receptor (GR)-selective compound (Org 214007-0) with a binding affinity to GR similar to that of prednisolone.

View Article and Find Full Text PDF

Progesterone regulates multiple behavioral, physiological, and pathological aspects of female reproductive biology through its two progesterone receptors (PRs), PR-B and the truncated PR-A. PR-B is necessary for mammary gland development in mice and, compared with PR-A, is overall a stronger transactivator of target genes due to an additional activation function 3 (AF3) domain. In dogs, known for their high sensitivity to progesterone-induced mammary cancer, the PR-B function was studied.

View Article and Find Full Text PDF

In vitro toxicity screening can reduce the attrition rate of drug candidates in the pharmaceutical industry in the early development process. The focus in this study is to compare the sensitivity for cytotoxicity of a time-resolved fluoro metric oxygen probe with that of a fluoro metric Alamar Blue™ (AB) assay. Both assays measure mitochondrial activity by either oxygen consumption (LUX-A65N-1 (MitoXpress, Luxcel) probe) or NADH/FADH conversion (AB).

View Article and Find Full Text PDF

In the present study an automated image analysis assisted in vitro micronucleus assay was developed with the rodent cell line CHO-k1 and the human hepatoma cell line HepG2, which are both commonly used in regulatory genotoxicity assays. The HepG2 cell line was chosen because of the presence in these cells of a functionally active p53 protein, a functionally competent DNA-repair system, active enzymes for phase-I and -II metabolism, and an active Nrf2 electrophile responsive system. These properties may result in an assay with a high predictivity for in vivo genotoxicity.

View Article and Find Full Text PDF

The main goal of the present work was to better understand the molecular mechanisms underlying liver hypertrophy (LH), a recurrent finding observed following acute or repeated drug administration to animals, using transcriptomic technologies together with the results from conventional toxicology methods. Administration of 5 terminated proprietary drug candidates from participating companies involved in the EU Innomed PredTox Project or the reference hepatotoxicant troglitazone to rats for up to a 14-day duration induced LH as the main liver phenotypic toxicity outcome. The integrated analysis of transcriptomic liver expression data across studies turned out to be the most informative approach for the generation of mechanistic models of LH.

View Article and Find Full Text PDF

The PR CALUX® cell line is a stably transfected human U2-OS cell line expressing the human PR and a luciferase reporter construct containing three progesterone-responsive elements coupled to a minimal promoter. The validity of this assay has been studied as an alternative to the McPhail assay in rabbits, an in vivo assay to detect progestins. The PR CALUX assay was characterized by its stable expression of PR protein which leads to induction of endogenous PR target genes by progestins.

View Article and Find Full Text PDF

Four different mechanism-based high-throughput luciferase-reporter assays were developed in human HepG2 cells, which contain phase I and II metabolic activity and a functionally active p53 protein. The promoter regions of RAD51C and Cystatin A, as well as the responsive element of the p53 protein, were selected for the generation of the genotoxicity reporter assays. Moreover, a luciferase-based reporter assay was generated that measures the activation of the Nrf2 oxidative stress pathway.

View Article and Find Full Text PDF

Selective estrogen receptor modulators (SERMs) and selective androgen receptor modulators (SARMs) are compounds that activate their cognate receptor in particular target tissues without affecting other organs. Many of these compounds will find their use in therapeutic treatments. However, they also will have a high potential for misuse in veterinary practice and the sporting world.

View Article and Find Full Text PDF

The Vitotox and RadarScreen assays were evaluated as early screens for mutagenicity and clastogenicity, respectively. The Vitotox assay is a bacterial reporter assay in Salmonella typhimurium based on the SOS-response, and it contains a luciferase gene under control of the recN promoter. The RadarScreen assay is a RAD54 promoter-linked beta-galactosidase reporter assay in yeast.

View Article and Find Full Text PDF

The influence of combinatorial chemistry and high-throughput screening (HTS) technologies in the pharmaceutical industry during the last 10 years has been enormous. However, the attrition rate of drugs in the clinic due to toxicity during this period still remained 40-50%. The need for reduced toxicity failure led to the development of early toxicity screening assays.

View Article and Find Full Text PDF

Strong activation of the AhR can lead to various toxic effects such as (non-genotoxic) carcinogenicity. Moreover, drug-drug interactions by non- or competitive inhibition of CYP1A1 and 1A2 may cause adverse side effects. Normally the majority of toxicity studies are performed in rats, while for the prediction of human toxicity human AhR activation and CYP1A competition should be studied.

View Article and Find Full Text PDF

HIV-infected patients in sub-Saharan countries highly depend on traditional medicines for the treatment of opportunistic oral infections as candidiasis. Previous investigations on antifungal activity of medicinal plant extracts utilized by traditional healers in Tanzania have revealed 12 extracts with potent antifungal activity. Although the plants may be good candidates for new treatment opportunities, they can be toxic or genotoxic and could cause pharmacokinetic interactions when used concomitantly with antiretroviral agents.

View Article and Find Full Text PDF

Recently we constructed yeast cells that either express the human estrogen receptor alpha or the human androgen receptor in combination with a consensus ERE or ARE repeat in the promoter region of a green fluorescent protein (yEGFP) read-out system. These bioassays were proven to be highly specific for their cognate agonistic compounds. In this study the value of these yeast bioassays was assessed for analysis of compounds with antagonistic properties.

View Article and Find Full Text PDF

The HepG2 cell line is a valuable tool for screening for cytotoxicity in the early phase of pharmaceutical development. Some compounds which produce reactive and toxic metabolites, are classified as being toxic in HepG2 cells. In contrast, other compounds, which are toxic in primary human hepatocytes, are not toxic in HepG2 cells.

View Article and Find Full Text PDF

Early in vitro toxicity screening might improve the success rate of new chemical entities in pharmaceutical development. In previous studies, the advantage of cytotoxicity screening with the HepG2 cell line was shown. Cytotoxicity could be identified for 70% of the compounds in these assays as compared with known toxicity in either in vitro assays in primary hepatocytes, in in vivo assays in rats, or in (pre-)clinical development in humans.

View Article and Find Full Text PDF

(1)H nuclear magnetic resonance (NMR) spectroscopy of rat urine in combination with pattern recognition analysis was evaluated for early noninvasive detection of toxicity of investigational chemical entities. Bromobenzene (B) and paracetamol (P) were administered at five single oral dosages between 2 and 500 mg/kg and between 6 and 1800 mg/kg, respectively. The sensitivity of the proposed method to detect changes in the NMR spectra 24 and 48 h after single dosing was compared with histopathology and biochemical parameters in plasma and urine.

View Article and Find Full Text PDF

A procedure of nuclear magnetic resonance (NMR) urinalysis using pattern recognition is proposed for early detection of toxicity of investigational compounds in rats. The method is applied to detect toxicity upon administration of 13 toxic reference compounds and one nontoxic control compound (mianserine) in rats. The toxic compounds are expected to induce necrosis (bromobenzene, paracetamol, carbon tetrachloride, iproniazid, isoniazid, thioacetamide), cholestasis (alpha-naphthylisothiocyanate (ANIT), chlorpromazine, ethinylestradiol, methyltestosterone, ibuprofen), or steatosis (phenobarbital, tetracycline).

View Article and Find Full Text PDF

Accumulation of damage in undifferentiated cells may threaten homeostasis and regenerative capacity. Remarkably, p53 has been suggested to be transcriptionally inactive in these cells. To gain insight in the kinetics and interplay of the predominant transcriptional responses of DNA damage signalling pathways in undifferentiated cells, mouse embryonic stem cells were exposed to cisplatin at four different time points (2, 4, 8 and 24h) and concentrations (1, 2, 5 and 10 microM).

View Article and Find Full Text PDF

Identification of nuclear receptor-mediated endocrine activities is important in a variety of fields, ranging from pharmacological and clinical screening, to food and feed safety, toxicological monitoring, and risk assessment. Traditionally animal studies such as the Hershberger and Allen-Doisy tests are used for the assessment of androgenic and estrogenic potencies, respectively. To allow fast analysis of the activities of new chemicals, food additives, and pharmaceutical compounds, high-throughput screening strategies have been developed.

View Article and Find Full Text PDF