Publications by authors named "Willem J M Mulder"

Trained immunity is characterized by histone modifications and metabolic changes in innate immune cells following exposure to inflammatory signals, leading to heightened responsiveness to secondary stimuli. Although our understanding of the molecular regulation of trained immunity has increased, the role of adaptive immune cells herein remains largely unknown. Here, we show that T cells modulate trained immunity via cluster of differentiation 40-tissue necrosis factor receptor-associated factor 6 (CD40-TRAF6) signaling.

View Article and Find Full Text PDF

Regulating innate immunity is an emerging approach to improve cancer immunotherapy. Such regulation requires engaging myeloid cells by delivering immunomodulatory compounds to hematopoietic organs, including the spleen. Here we present a polymersome-based nanocarrier with splenic avidity and propensity for red pulp myeloid cell uptake.

View Article and Find Full Text PDF

Macrophages are key inflammatory mediators in many pathological conditions, including cardiovascular disease (CVD) and cancer, the leading causes of morbidity and mortality worldwide. This makes macrophage burden a valuable diagnostic marker and several strategies to monitor these cells have been reported. However, such strategies are often high-priced, non-specific, invasive, and/or not quantitative.

View Article and Find Full Text PDF

Background And Aims: Chronic stress associates with cardiovascular disease, but mechanisms remain incompletely defined. Advanced imaging was used to identify stress-related neural imaging phenotypes associated with atherosclerosis.

Methods: Twenty-seven individuals with post-traumatic stress disorder (PTSD), 45 trauma-exposed controls without PTSD, and 22 healthy controls underwent 18F-fluorodeoxyglucose positron emission tomography/magnetic resonance imaging (18F-FDG PET/MRI).

View Article and Find Full Text PDF

Innate immune memory, also called "trained immunity," is a functional state of myeloid cells enabling enhanced immune responses. This phenomenon is important for host defense, but also plays a role in various immune-mediated conditions. We show that exogenously administered sphingolipids and inhibition of sphingolipid metabolizing enzymes modulate trained immunity.

View Article and Find Full Text PDF
Article Synopsis
  • * While trained immunity can boost resistance to diseases, it can also lead to problems like weakened immune responses during severe infections or contribute to autoimmune and inflammatory diseases if not properly regulated.
  • * The review discusses the mechanisms behind trained immunity and suggests that it could be a key focus for developing new vaccines and therapies, particularly in cancer treatments and managing inflammatory disorders.
View Article and Find Full Text PDF

Fluorine-19 (F) magnetic resonance imaging is a unique quantitative molecular imaging modality that makes use of an injectable fluorine-containing tracer that generates the only visible F signal in the body. This hot spot imaging technique has recently been used to characterize a wide array of cardiovascular diseases and seen a broad range of technical improvements. Concurrently, its potential to be translated to the clinical setting is being explored.

View Article and Find Full Text PDF

In the past 2 decades, research on atherosclerotic cardiovascular disease has uncovered inflammation to be a key driver of the pathophysiological process. A pressing need therefore exists to quantitatively and longitudinally probe inflammation, in preclinical models and in cardiovascular disease patients, ideally using non-invasive methods and at multiple levels. Here, we developed and employed multiparametric imaging approaches to investigate the immune response following myocardial infarction.

View Article and Find Full Text PDF

Trained immunity, also known as innate immune memory, is a persistent hyper-responsive functional state of innate immune cells. Accumulating evidence implicates trained immunity as an underlying mechanism of chronic inflammation in atherosclerotic cardiovascular disease. In this context, trained immunity is induced by endogenous atherosclerosis-promoting factors, such as modified lipoproteins or hyperglycaemia, causing broad metabolic and epigenetic reprogramming of the myeloid cell compartment.

View Article and Find Full Text PDF

Immunoparalysis is a compensatory and persistent anti-inflammatory response to trauma, sepsis or another serious insult, which increases the risk of opportunistic infections, morbidity and mortality. Here, we show that in cultured primary human monocytes, interleukin-4 (IL4) inhibits acute inflammation, while simultaneously inducing a long-lasting innate immune memory named trained immunity. To take advantage of this paradoxical IL4 feature in vivo, we developed a fusion protein of apolipoprotein A1 (apoA1) and IL4, which integrates into a lipid nanoparticle.

View Article and Find Full Text PDF

DNA has emerged as an attractive medium for archival data storage due to its durability and high information density. Scalable parallel random access to information is a desirable property of any storage system. For DNA-based storage systems, however, this still needs to be robustly established.

View Article and Find Full Text PDF

Cytokines have pivotal roles in immunity, making them attractive as therapeutics for a variety of immune-related disorders. However, the widespread clinical use of cytokines has been limited by their short blood half-lives and severe side effects caused by low specificity and unfavourable biodistribution. Innovations in bioengineering have aided in advancing our knowledge of cytokine biology and yielded new technologies for cytokine engineering.

View Article and Find Full Text PDF

Myocardial infarction, stroke, mental disorders, neurodegenerative processes, autoimmune diseases, cancer and the human immunodeficiency virus impact the haematopoietic system, which through immunity and inflammation may aggravate pre-existing atherosclerosis. The interplay between the haematopoietic system and its modulation of atherosclerosis has been studied by imaging the cardiovascular system and the activation of haematopoietic organs via scanners integrating positron emission tomography and resonance imaging (PET/MRI). In this Perspective, we review the applicability of integrated whole-body PET/MRI for the study of immune-mediated phenomena associated with haematopoietic activity and cardiovascular disease, and discuss the translational opportunities and challenges of the technology.

View Article and Find Full Text PDF

Myeloid cells, crucial players in antitumoral defense, are affected by tumor-derived factors and treatment. The role of myeloid cells and their progenitors prior to tumor infiltration is poorly understood. Here we show single-cell transcriptomics and functional analyses of the myeloid cell lineage in patients with non-medullary thyroid carcinoma (TC) and multinodular goiter, before and after treatment with radioactive iodine compared to healthy controls.

View Article and Find Full Text PDF

Trained immunity is a functional state of the innate immune response and is characterized by long-term epigenetic reprogramming of innate immune cells. This concept originated in the field of infectious diseases - training of innate immune cells, such as monocytes, macrophages and/or natural killer cells, by infection or vaccination enhances immune responses against microbial pathogens after restimulation. Although initially reported in circulating monocytes and tissue macrophages (termed peripheral trained immunity), subsequent findings indicate that immune progenitor cells in the bone marrow can also be trained (that is, central trained immunity), which explains the long-term innate immunity-mediated protective effects of vaccination against heterologous infections.

View Article and Find Full Text PDF

High-risk atherosclerotic plaques are characterized by active inflammation and abundant leaky microvessels. We present a self-gated, dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) acquisition with compressed sensing reconstruction and apply it to assess longitudinal changes in endothelial permeability in the aortic root of Apoe atherosclerotic mice during natural disease progression. Twenty-four, 8-week-old, female Apoe mice were divided into four groups (n = 6 each) and imaged with self-gated DCE-MRI at 4, 8, 12, and 16 weeks after high-fat diet initiation, and then euthanized for CD68 immunohistochemistry for macrophages.

View Article and Find Full Text PDF

The mechanisms underlying innate immune memory have been extensively explored in the last decades but are in fact largely unknown. Although the specificity of adaptive immune memory in vertebrates is ensured through the recombination of immunoglobulin family genes and clonal expansion, the basic mechanisms of innate immune cells' nonspecific increased responsiveness rely on epigenetic, transcriptional, and metabolic programs after transient stimulation. Changes in these programs result in enhanced responsiveness to secondary challenges with a wide variety of stimuli.

View Article and Find Full Text PDF

In recent years, cardiovascular immuno-imaging by positron emission tomography (PET) has undergone tremendous progress in preclinical settings. Clinically, two approved PET tracers hold great potential for inflammation imaging in cardiovascular patients, namely FDG and DOTATATE. While the former is a widely applied metabolic tracer, DOTATATE is a relatively new PET tracer targeting the somatostatin receptor 2 (SST2).

View Article and Find Full Text PDF

Optimal treatment of classical risk factors, such as dyslipidemia, cannot completely prevent atherosclerotic cardiovascular disease, which is called residual cardiovascular risk. The anti-inflammatory drugs colchicine and canakinumab can lower this residual risk, illustrating the importance of inflammation in the pathophysiology of cardiovascular disease. Circulating granulocytes and activated monocytes are associated with atherosclerotic cardiovascular disease in observational studies.

View Article and Find Full Text PDF

Background And Aims: The endothelium plays a major role in atherosclerosis, yet the endothelial plaque surface is a largely uncharted territory. Here we hypothesize that atherosclerosis-driven remodeling of the endothelium is a dynamic process, involving both damaging and regenerative mechanisms.

Methods: Using scanning electron microscopy (SEM) and immuno-SEM, we studied endothelial junction ultrastructure, endothelial openings and immune cell-endothelium interactions in eight apoe mice and two human carotid plaques.

View Article and Find Full Text PDF

Innate immune cells constitute a plastic and heterogeneous cell population of the tumor microenvironment. Because of their high tumor infiltration and close interaction with resident tumor cells, they are compelling targets for anti-cancer therapy through either ablation or functionally reprogramming. Kinase inhibitors (KIs) that target aberrant signaling pathways in tumor proliferation and angiogenesis have been shown to have additional immunological effects on myeloid cells that may contribute to a protective antitumor immune response.

View Article and Find Full Text PDF