mosquitoes are major vectors of dengue, chikungunya, and other arboviral diseases. 's capacity to reproduce and to spread disease depends on the female mosquitoes' ability to obtain blood meals and find water-filled containers in which to lay eggs (oviposit). While humidity sensation (hygrosensation) has been implicated in these behaviors, the specific hygrosensory pathways involved have been unclear.
View Article and Find Full Text PDFGustatory receptors (GRs) are critical for insect chemosensation and are potential targets for controlling pests and disease vectors, making their structural investigation a vital step toward such applications. We present structures of Bombyx mori Gr9 (BmGr9), a fructose-gated cation channel, in agonist-free and fructose-bound states. BmGr9 forms a tetramer similar to distantly related insect odorant receptors (ORs).
View Article and Find Full Text PDFGustatory Receptors (GRs) are critical for insect chemosensation and are potential targets for controlling pests and disease vectors. However, GR structures have not been experimentally determined. We present structures of Gr9 (BmGr9), a fructose-gated cation channel, in agonist-free and fructose-bound states.
View Article and Find Full Text PDFAnimals commonly use thermosensation, the detection of temperature and its variation, for defensive purposes: to maintain appropriate body temperature and to avoid tissue damage. However, some animals also use thermosensation to go on the offensive: to hunt for food. The emergence of heat-dependent foraging behavior has been accompanied by the evolution of diverse thermosensory organs of often exquisite thermosensitivity.
View Article and Find Full Text PDFThe advent of CRISPR/Cas9-mediated genome editing has expanded the range of animals amenable to targeted genetic analysis. This has accelerated research in animals not traditionally studied using molecular genetics. However, studying genes essential for reproduction or survival in such animals remains challenging, as they lack the tools that aid genetic analysis in traditional genetic model organisms.
View Article and Find Full Text PDFTo reproduce and to transmit disease, female mosquitoes must obtain blood meals and locate appropriate sites for egg laying (oviposition). While distinct sensory cues drive each behavior, humidity contributes to both. Here, we identify the mosquito's humidity sensors (hygrosensors).
View Article and Find Full Text PDFEnhanced levels of dietary magnesium improve long-term memory in fruit flies.
View Article and Find Full Text PDFAnimals exhibit innate and learned preferences for temperature and humidity-conditions critical for their survival and reproduction. Leveraging a whole-brain electron microscopy volume, we studied the adult Drosophila melanogaster circuitry associated with antennal thermo- and hygrosensory neurons. We have identified two new target glomeruli in the antennal lobe, in addition to the five known ones, and the ventroposterior projection neurons (VP PNs) that relay thermo- and hygrosensory information to higher brain centers, including the mushroom body and lateral horn, seats of learned and innate behavior.
View Article and Find Full Text PDFMosquitoes transmit pathogens that kill >700,000 people annually. These insects use body heat to locate and feed on warm-blooded hosts, but the molecular basis of such behavior is unknown. Here, we identify ionotropic receptor IR21a, a receptor conserved throughout insects, as a key mediator of heat seeking in the malaria vector Although mediates heat avoidance in , we find it drives heat seeking and heat-stimulated blood feeding in At a cellular level, is essential for the detection of cooling, suggesting that during evolution mosquito heat seeking relied on cooling-mediated repulsion.
View Article and Find Full Text PDFThe ability to sense heat is crucial for survival. Increased heat tolerance may prove beneficial by conferring the ability to inhabit otherwise prohibitive ecological niches. This phenomenon is widespread and is found in both large and small animals.
View Article and Find Full Text PDFTransient receptor potential ankyrin 1 (TRPA1) is a polymodal ion channel sensitive to temperature and chemical stimuli. The importance of temperature and aversive chemical detection for survival has driven the evolutionary diversity of TRPA1 sensitivity. This diversity can be observed in the various roles of TRPA1 in different species, where it is proposed to act as a temperature-insensitive chemosensor, a heat transducer, a noxious cold transducer, or a detector of low-intensity heat for prey localization.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2015
Hibernating mammals possess a unique ability to reduce their body temperature to ambient levels, which can be as low as -2.9 °C, by active down-regulation of metabolism. Despite such a depressed physiologic phenotype, hibernators still maintain activity in their nervous systems, as evidenced by their continued sensitivity to auditory, tactile, and thermal stimulation.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2014
In single-cell eukaryotes the pathways that monitor nutrient availability are central to initiating the meiotic program and gametogenesis. In Saccharomyces cerevisiae an essential step in the transition to the meiotic cycle is the down-regulation of the nutrient-sensitive target of rapamycin complex 1 (TORC1) by the increased minichromosome loss 1/ GTPase-activating proteins toward Rags 1 (Iml1/GATOR1) complex in response to amino acid starvation. How metabolic inputs influence early meiotic progression and gametogenesis remains poorly understood in metazoans.
View Article and Find Full Text PDFTransient receptor potential ankyrin 1 (TRPA1) is a polymodal excitatory ion channel found in sensory neurons of different organisms, ranging from worms to humans. Since its discovery as an uncharacterized transmembrane protein in human fibroblasts, TRPA1 has become one of the most intensively studied ion channels. Its function has been linked to regulation of heat and cold perception, mechanosensitivity, hearing, inflammation, pain, circadian rhythms, chemoreception, and other processes.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
October 2014
Relying almost exclusively on their acute sense of touch, tactile-foraging birds can feed in murky water, but the cellular mechanism is unknown. Mechanical stimuli activate specialized cutaneous end organs in the bill, innervated by trigeminal afferents. We report that trigeminal ganglia (TG) of domestic and wild tactile-foraging ducks exhibit numerical expansion of large-diameter mechanoreceptive neurons expressing the mechano-gated ion channel Piezo2.
View Article and Find Full Text PDFThe X-linked inhibitor of apoptosis protein (XIAP) is a zinc metalloprotein that has recently been implicated in copper homeostasis. XIAP mediates apoptosis via the inhibition of caspase enzymes through multiple baculovirus IAP repeat (BIR) domains, wherein zinc is coordinated by three cysteine amino acids and one histidine amino acid. XIAP binds copper ions directly at one or more unspecified sites, indicating that the protein may function as a copper sensor.
View Article and Find Full Text PDF