Publications by authors named "Willem H van Riemsdijk"

Phosphorus transport from agricultural land contributes to eutrophication of surface waters. Pipe drain and trench waters from a grassland field on a heavy clay soil in the Netherlands were sampled before and after manure application. Phosphorus speciation was analyzed by physicochemical P fractionation, and the colloidal P fraction in the dissolved fraction (<0.

View Article and Find Full Text PDF

In soil application, o,o-FeEDDHA (iron (3+) ethylene diamine-N,N'-bis(2-hydroxy phenyl acetic acid) complex) is the active ingredient of FeEDDHA chelate-based Fe fertilizers. The effectiveness of o,o-FeEDDHA is potentially compromised by the displacement of Fe from FeEDDHA by Cu. The actual impact of Cu competition is codetermined by the kinetics of the displacement reaction.

View Article and Find Full Text PDF

Factors such as pH, solution ion composition, and the presence of natural organic matter (NOM) play a crucial role in the effectiveness of phosphorous adsorption by iron oxides. The interplay between these factors shows a complicated pattern and can sometimes lead to controversial results. With the help of mechanistic modeling and adsorption experiments, the net macroscopic effect of single and combined factors can be better understood and predicted.

View Article and Find Full Text PDF

The determination of free Zn(2+) ion concentration is a key in the study of environmental systems like river water and soils, due to its impact on bioavailability and toxicity. AGNES (Absence of Gradients and Nernstian Equilibrium Stripping) and DMT (Donnan Membrane Technique) are emerging techniques suited for the determination of free heavy metal concentrations, especially in the case of Zn(2+), given that there is no commercial Ion Selective Electrode. In this work, both techniques have been applied to synthetic samples (containing Zn and NTA) and natural samples (Rhine river water and soils), showing good agreement.

View Article and Find Full Text PDF

The pH dependency of soluble phosphate in soil was measured for six agricultural soils over a pH range of 3-10. A mechanistic model, the LCD (ligand charge distribution) model, was used to simulate this change, which considers phosphate adsorption to metal (hydr)oxides in soils under the influence of natural organic matter (NOM) and polyvalent cations (Ca(2+), Al(3+), and Fe(3+)). For all soils except one, the description in the normal pH range 5-8 is good.

View Article and Find Full Text PDF

A 0.01 M CaCl(2) extraction is often used to asses the bioavailability of plant nutrients in soils. However, almost no correlation was found between selenium (Se) in the soil extraction and Se content in grass.

View Article and Find Full Text PDF

FeEDDHA (iron(3+) ethylenediamine-N,N'-bis(hydroxyphenylacetic acid) products are commonly applied to mend and prevent Fe deficiency chlorosis in soil-grown crops. Plants mainly take up Fe in the progressed vegetative and in the reproductive stages. This study examined which of the principal constituents of FeEDDHA products (the isomers racemic o,o-FeEDDHA, meso o,o-FeEDDHA, and o,p-FeEDDHA), most effectively meets the Fe requirements of soybean plants (Glycine max (L.

View Article and Find Full Text PDF

Dynamic ion speciation using DMT (Donnan membrane technique) requires insight into the physicochemical characteristics of diffusion in charged membranes (tortuosity, local diffusion coefficients) as well as ion accumulation. The latter can be precluded by studying the diffusion of neutral species, such as boric acid, B(OH)₃⁰(aq), arsenite, As(OH)₃⁰(aq), or water. In this study, the diffusion rate of B(OH)₃⁰ has been evaluated as a function of the concentration, pH, and ionic strength.

View Article and Find Full Text PDF

Donnan membrane technique (DMT) is developed and tested for determination of free anion concentrations. Time needed to reach the Donnan membrane equilibrium depends on type of ions and the background. The Donnan membrane equilibrium is reached in 1 day for Cl(-), 1-2 days for NO(3)(-), 1-4 days for SO(4)(2-) and SeO(4)(2-), and 1-14 days for H(2)PO(4)(-) in a background of 2-200 mM KCl or K(2)SO(4).

View Article and Find Full Text PDF

Very low concentrations of free metal ion in natural samples can be measured using the Donnan membrane technique (DMT) based on ion transport kinetics. In this paper, the possible effects of slow dissociation of metal complexes on the interpretation of kinetic DMT are investigated both theoretically and experimentally. The expressions of the lability parameter, Lgrangian , were derived for DMT.

View Article and Find Full Text PDF

In this work, data for the interactions between humic acid (HA) or fulvic acid (FA) with phosphate ions at the surface of goethite (alpha-FeOOH) are presented. The results show very clear differences between HA and FA in their interactions with phosphate at goethite surface. HA is strongly bound to goethite but surprisingly does not strongly affect the phosphate binding, whereas FA is less strongly bound, but these molecules have a very large effect on the phosphate adsorption, and vice versa.

View Article and Find Full Text PDF

The total metal content of the soil or total metal concentration in the soil solution is not always a good indicator for metal availability to plants. Therefore, several speciation techniques have been developed that measure a defined fraction of the total metal concentration in the soil solution. In this study the Donnan Membrane Technique (DMT) was used to measure free metal ion concentrations in CaCl(2) extractions (to mimic the soil solution, and to work under standardized conditions) of 10 different soils, whereas diffusive gradients in thin-films (DGT) and scanning chronopotentiometry (SCP) were used to measure the sum of free and labile metal concentrations in the CaCl(2) extracts.

View Article and Find Full Text PDF

Complex systems, simulating natural conditions like in groundwater, have rarely been studied, since measuring and in particular, modeling of such systems is very challenging. In this paper, the adsorption of the oxyanions of As(III) and As(V) on goethite has been studied in presence of various inorganic macro-elements (Mg(2+), Ca(2+), PO(3-)(4), CO(2-)(3)). We have used 'single-,' 'dual-,' and 'triple-ion' systems.

View Article and Find Full Text PDF

The As(V) and As(III) interaction with HCO3 has been studied for goethite systems using a pH and As concentration range that is relevant for field situations. Our study shows that dissolved bicarbonate may act as a competitor for both As(V) and As(III). In our closed systems, the largest effect of bicarbonate occurs at the lowest experimental pH values (pH approximately 6.

View Article and Find Full Text PDF

Competitive interaction of carbonate and phosphate on goethite has been studied quantitatively. Both anions are omnipresent in soils, sediments, and other natural systems. The PO4-CO3 interaction has been studied in binary goethite systems containing 0-0.

View Article and Find Full Text PDF

Most research dealing with soil (solution) speciation and metal uptake by plants has focused on the relationships between a certain bioavailable fraction in the soil and metal uptake by aboveground parts of the plants. Here, a new approach to interpretation of metal uptake is presented that considers four steps: First, the metal concentration in the soil solution is related to the total metal content of the soil. Second, the metal adsorption to the root surface is related to the metal concentration in the soil solution.

View Article and Find Full Text PDF

In this paper, the LCD (ligand charge distribution) model is applied to describe the adsorption of (Tongbersven) humic acid (HA) to goethite. The model considers both electrostatic interactions and chemical binding between HA and goethite. The large size of HA particles limits their close access to the surface.

View Article and Find Full Text PDF

The surface speciation of phosphate has been evaluated with surface complexation modeling using an interfacial charge distribution (CD) approach based on ion adsorption and ordering of interfacial water. In the CD model, the charge of adsorbed ions is distributed over two electrostatic potentials in the double-layer profile. The CD is related to the structure of the surface complex.

View Article and Find Full Text PDF

The adsorption of Si on goethite (alpha-FeOOH) has been studied in batch experiments that cover the natural range of Si concentrations as found in the environment. The results have been interpreted and quantified with the charge distribution (CD) and multi-site surface complexation (MUSIC) model in combination with an extended Stern (ES) layer model option. This new double layer approach (ES) accounts for ordering of interfacial water molecules leading to stepwise changes in the location of electrolyte ions near the surface [T.

View Article and Find Full Text PDF

Among speciation techniques that are able to measure free metal ion concentrations, the Donnan membrane technique (DMT) has the advantage that it can measure many different free metal ion concentrations simultaneously in a multicomponent sample. Even though the DMT has been applied to several systems, like surface waters, soil solutions, and manure slurry, basic features and calibrations with model calculations of the laboratory and field DMT have not been done sufficiently yet. Therefore, we tested the application of the DMT on metal complexation with several synthetic and natural ligands and the applicability of the dynamic mode of the DMT.

View Article and Find Full Text PDF

The adsorption of humic acids (HA) to goethite (at pH 3-11) and the proton co-adsorption (at pH 4.0, 5.5, and 7.

View Article and Find Full Text PDF

Model VI and the NICA-Donnan model are two successful models presently available for describing metal ion binding by humic materials. Both models deal with the complexity of the underlying processes (intrinsic heterogeneity, partial correlation between affinity distributions, variable stoichiometry, electrostatics) in a pragmatic way. The parameters of the NICA-Donnan model and their determination are discussed.

View Article and Find Full Text PDF

The LCD model (Ligand and Charge Distribution) has recently been proposed to describe the adsorption of humic substances to oxides, in which the CD-MUSIC model and the NICA model for ion binding to respectively oxides and humic substances are integrated. In this paper, the LCD model is improved by applying the ADAPT model (ADsorption and AdaPTation) to calculate the equilibrium distribution of the humic substances based on the change of the average chemical state of the particles. The improved LCD model is applied to calculate the adsorption of fulvic acid (Strichen) to goethite, in which it is assumed that the carboxylic type of groups of fulvic acid can form innersphere complexes with the surface sites.

View Article and Find Full Text PDF

The adsorption of As(III) and As(V) on goethite has been studied as a function of pH and loading. The data can be successfully described with the charge distribution (CD) model (extended Stern layer option) using realistic species observed by EXAFS. The CD values have been derived theoretically.

View Article and Find Full Text PDF

The double layer structure of metal (hydr)oxides is discussed. Charge separation may exist between the minimum distance of approach of electrolyte ions and the DDL domain. The corresponding capacitance value of the outer Stern layer is similar to the capacitance value of the inner Stern layer.

View Article and Find Full Text PDF