Publications by authors named "Willem Gispen"

In this work, we introduce variational umbrella seeding, a novel technique for computing nucleation barriers. This new method, a refinement of the original seeding approach, is far less sensitive to the choice of order parameter for measuring the size of a nucleus. Consequently, it surpasses seeding in accuracy and umbrella sampling in computational speed.

View Article and Find Full Text PDF

By employing brute-force molecular dynamics, umbrella sampling, and seeding simulations, we investigate homogeneous nucleation during melting and freezing of hard spheres. We provide insights into these opposing phase transitions from the standpoint of classical nucleation theory. We observe that melting has both a lower driving force and a lower interfacial tension than freezing.

View Article and Find Full Text PDF
Article Synopsis
  • Using molecular dynamics simulations, we analyze the nucleation rates of hard spheres, even overcoming significant nucleation barriers up to 28 kBT.
  • Our results provide a solid validation of nucleation rates derived from both rare-event methods and classical nucleation theory.
  • The nucleation rates we obtained align closely with previous studies by Filion et al. and Espinosa et al., confirming the reliability of our approach.
View Article and Find Full Text PDF

Nucleation plays a critical role in the birth of crystals and is associated with a vast array of phenomena, such as protein crystallization and ice formation in clouds. Despite numerous experimental and theoretical studies, many aspects of the nucleation process, such as the polymorph selection mechanism in the early stages, are far from being understood. Here, we show that the hitherto unexplained excess of particles in a face-centered-cubic (fcc)-like environment, as compared to those in a hexagonal-close-packed (hcp)-like environment, in a crystal nucleus of hard spheres can be explained by the higher order structure in the fluid phase.

View Article and Find Full Text PDF

We determine the kinetic phase diagram for nucleation and growth of crystal phases in a suspension of charged colloids. Exploiting the seeding approach in extensive simulations, we calculate nucleation barrier heights for face-centered cubic (fcc) and body-centered cubic (bcc) phases for varying screening lengths and supersaturations. We determine for the entire metastable fluid region the crystal polymorph with the lowest nucleation barrier, and find a regime close to the triple point where metastable bcc can form due to a lower nucleation barrier, even though fcc is the stable phase.

View Article and Find Full Text PDF

In addition to its peripheral metabolic functions, insulin acts as a central neuromodulator and affects synaptic plasticity of the hippocampal neurons. In this study, hyperinsulinemic obese zucker rats (OZR) with autosomal recessive mutation of the fa-gene were tested in water maze for learning and memory. The animals were then decapitated and hippocampal slices were prepared for electrophysiological examination.

View Article and Find Full Text PDF

In this study we examined the effects of sustained intracerebroventricular insulin infusion on hippocampal synaptic plasticity in rats. Insulin was infused intracerebroventricularly in male Wistar rats (n=12) for 3 months using osmotic minipumps. A control group (n=12) received a sham operation.

View Article and Find Full Text PDF

David de Wied was a natural leader with many a talent. He was the director of the Rudolf Magnus Institute at Utrecht University and president of the Royal Netherlands Academy of Arts and Sciences. He coached over 75 Ph.

View Article and Find Full Text PDF

Voluntary locomotor training as induced by enriched housing of rats stimulates recovery of locomotion after spinal cord injury (SCI). Generally it is thought that spinal neural networks of motor- and interneurons located in the ventral and intermediate laminae within the lumbar intumescence of the spinal cord, also referred to as central pattern generators (CPGs), are the 'producers of locomotion' and play a pivotal role in the amelioration of locomotor deficits after SCI. It has been suggested that locomotor training provides locomotor-specific sensory feedback into the CPGs, which stimulates remodeling of central nervous system pathways, including motor systems.

View Article and Find Full Text PDF

The central nervous system complications of diabetes mellitus (DM) include defects in hippocampal synaptic plasticity induction and difficulties in learning and memory. DM was induced by streptozotocin (STZ) injection in rats. After 12 weeks of DM duration, the rats were decapitated, and hippocampal slices were prepared for in vitro study.

View Article and Find Full Text PDF

To investigate the sensitivity of human Schwann cells to cisplatin (cis-DDP), different approaches to estimate DNA damage were used: the comet assay, morphological evaluation of the granular condensation of nuclear chromatin and the terminal transferase-mediated dUTP nick-end-labelling (TUNEL) method. The number of micronuclei (MNi), as a sign of cisplatin-induced genotoxicity, was counted. DNA damage assessed by the comet assay was already evident after 1.

View Article and Find Full Text PDF

Diabetes mellitus is associated with modest impairments in cognition, particularly in the elderly. In addition, the risk of dementia is increased. We review herein studies in rodent models that may help to identify the mechanisms that underlie these adverse effects of diabetes on the brain.

View Article and Find Full Text PDF

Insulin and its receptor are both present in the central nervous system and are implicated in neuronal survival and hippocampal synaptic plasticity. Here we show that insulin activates phosphatidylinositol 3-kinase (PI3K) and protein kinase B (PKB), and results in an induction of long-term depression (LTD) in hippocampal CA1 neurones. Evaluation of the frequency-response curve of synaptic plasticity revealed that insulin induced LTD at 0.

View Article and Find Full Text PDF

All possible peptoid-peptide hybrids of an MC4 receptor agonist were synthesized and investigated on cells expressing different melanocortin (MC) receptor subtypes and for rat grooming behavior. In general, receptor selectivity remained while affinity and potency were decreased. The length of the functional group of Trp was more important for MC3 and MC5 than for MC4 receptor binding.

View Article and Find Full Text PDF

The synthesis of a novel potent cyclic peptide MC4-ligand by ring-closing metathesis (RCM) is described. Based on the Ac-Nle-Gly-Lys-D-Phe-Arg-Trp-Gly-NH2-MC4 ligand, Ac-Nle-Alg-Lys-D-Phe-Arg-Trp-Alg-NH2 was designed and synthesized followed by cyclization using RCM. Both compounds are high affinity and selective MC4-R-agonists.

View Article and Find Full Text PDF

Diabetes mellitus can lead to functional and structural deficits in both the peripheral and central nervous system. The pathogenesis of these deficits is multifactorial, probably involving, among others, microvascular dysfunction and alterations in intracellular calcium homeostasis. The present study examined the effects of treatment with the Ca2+ antagonist nimodipine (20 mg/kg, intraperitoneal injection, every 48 h) on functional deficits in the peripheral and central nervous system in streptozotocin-diabetic rats.

View Article and Find Full Text PDF

The aim of our study was to test the hypothesis that differences in behavioral characteristics are linked to severity of arthritis in association with neuro-endocrine and immune reactivity in an inbred strain of rats. Lewis rats were selected as high-active (HA) and low-active (LA) animals based on their exploratory activity in the open field. Subsequently, adjuvant-arthritis (AA) was induced in both groups.

View Article and Find Full Text PDF

There are large individual differences in cancer progression and it has been suggested that behavioral and psychological characteristics of cancer patients may contribute to the course of the disease. To get more insight in the contribution of behavioral characteristics to cancer progression, we investigated in rats, whether a stable behavioral trait characteristic is associated with NK cell activity, tumor angiogenesis, and tumor metastasis formation. Lewis rats were characterized based on locomotor activity in an open field.

View Article and Find Full Text PDF

Melanocortin receptor ligands accelerate functional recovery after peripheral nerve crush. It is not known which mechanism is involved or via which melanocortin receptor this effect occurs, albeit indirect evidence favours the melanocortin MC4 receptor. To test whether the melanocortin MC4 receptor is involved in the effects of melanocortins on functional recovery, we used melanocortin compounds that distinguish the melanocortin MC4 receptor from the melanocortin MC1, MC3 and MC5 receptors on basis of selectivity and agonist/antagonist profile.

View Article and Find Full Text PDF

The brain has long been viewed as an insulin-insensitive organ. Following the demonstration of insulin receptors in the brain, this assumption has been challenged, and a whole new field of research has emerged. Insulin appears to play a role in brain physiology, and disturbances of cerebral insulin signalling and glucose homeostasis are implicated in brain pathology.

View Article and Find Full Text PDF

Synaptically released glutamate binds to ionotropic or metabotropic glutamate receptors. Metabotropic glutamate receptors (mGluRs) are G-protein-coupled receptors and can be divided into three subclasses (Group I-III) depending on their pharmacology and coupling to signal transduction cascades. Group I mGluRs are coupled to phospholipase C and are implicated in several important physiological processes, including activity-dependent synaptic plasticity, but their exact role in synaptic plasticity remains unclear.

View Article and Find Full Text PDF

Background: Diabetes mellitus is associated with deficits in cerebral function. Vascular disorders may play a role in the pathogenesis and provide a potential target for treatment. The present study examined if prevention and intervention treatment with the angiotensin converting enzyme inhibitor enalapril could improve peripheral and central neurophysiological deficits in streptozotocin-diabetic rats.

View Article and Find Full Text PDF

After damage of the sciatic nerve, a regeneration process is initiated. Neurons in the dorsal root ganglion regrow their axons and functional connections. The molecular mechanisms of this neuronal regenerative process have remained elusive, but a relationship with developmental processes has been conceived.

View Article and Find Full Text PDF