The ossicular joints of the middle ear can significantly affect middle-ear function, particularly under conditions such as high-intensity sound pressures or high quasi-static pressures. Experimental investigations of the mechanical behaviour of the human incudostapedial joint have shown strong non-linearity and asymmetry in tension and compression tests, but some previous finite-element models of the joint have had difficulty replicating such behaviour. In this paper, we present a finite-element model of the joint that can match the asymmetry and non-linearity well without using different model structures or parameters in tension and compression.
View Article and Find Full Text PDFJ Assoc Res Otolaryngol
October 2015
We present a finite-element model of the gerbil middle ear that, using a set of baseline parameters based primarily on a priori estimates from the literature, generates responses that are comparable with responses we measured in vivo using multi-point vibrometry and with those measured by other groups. We investigated the similarity of numerous features (umbo, pars-flaccida and pars-tensa displacement magnitudes, the resonance frequency and break-up frequency, etc.) in the experimental responses with corresponding ones in the model responses, as opposed to simply computing frequency-by-frequency differences between experimental and model responses.
View Article and Find Full Text PDFJ Assoc Res Otolaryngol
June 2014
This paper presents in vivo experimental measurements of vibrations on the pars flaccida, along the manubrium and at several points on the pars tensa in the gerbil with open middle-ear cavity. The effects of progressive opening of the middle-ear cavity are presented, with up to five different extents of opening. In all manubrial, pars-tensa and pars-flaccida responses, opening the cavity causes an increase in the low-frequency magnitude and a shift of the main middle-ear resonance to lower frequencies and introduces an antiresonance.
View Article and Find Full Text PDFJ Assoc Res Otolaryngol
August 2013
The purpose of the present work is to investigate the spatial vibration pattern of the gerbil tympanic membrane (TM) as a function of frequency. In vivo vibration measurements were done at several locations on the pars flaccida and pars tensa, and along the manubrium, on surgically exposed gerbil TMs with closed middle ear cavities. A laser Doppler vibrometer was used to measure motions in response to audio frequency sine sweeps in the ear canal.
View Article and Find Full Text PDFIn a healthy cochlea stimulated with two tones f (1) and f (2), combination tones are generated by the cochlea's active process and its associated nonlinearity. These distortion tones travel "in reverse" through the middle ear. They can be detected with a sensitive microphone in the ear canal (EC) and are known as distortion product otoacoustic emissions.
View Article and Find Full Text PDFThe middle ear is too complex a system for its function to be fully understood with simple descriptive models. Realistic mathematical models must be used in which structural elements are represented by geometrically correct three-dimensional (3D) models with correct physical parameters and boundary conditions. In the past, the choice of boundary conditions could not be based on experimental evidence as no clear-cut data were available.
View Article and Find Full Text PDFConclusions: The model appears relevant for studies on sequelae after acute otitis media (AOM), and may be the seed of a new, chronic tympanic membrane perforation model in the gerbil.
Objectives: To evaluate an experimental model for abortive otitis media and to assess the structural and functional changes of the tympanic membrane in the resolving phase.
Materials And Methods: The middle ears of 16 Mongolian gerbils were inoculated with type 6a Streptococcus pneumoniae.
The Oilbird and many Swiftlet species are unique among birds for their ability to echolocate. Echolocaters may benefit from improved hearing sensitivity. Therefore, morphological adaptations to echolocation might be present in echolocating birds' middle ears.
View Article and Find Full Text PDFDue to changes in ambient pressure and to the gas-exchange processes in the middle ear (ME) cavity, the ear is subject to ultra-low-frequency pressure variations, which are many orders of magnitude larger than the loudest acoustic pressures. Little quantitative data exist on how ME mechanics deals with these large quasi-static pressure changes and because of this lack of data, only few efforts could be made to incorporate quasi-static behavior into computer models. When designing and modeling ossicle prostheses and implantable ME hearing aids, the effects of large ossicle movements caused by quasi-static pressures should be taken into account.
View Article and Find Full Text PDFCurrent finite-element (FE) models of the eardrum are limited to low pressures because of the assumption of linearity. Our objective is to investigate the effects of geometric nonlinearity in FE models of the cat eardrum with an approximately immobile malleus for pressures up to +/-2.2 kPa, which are within the range of pressures used in clinical tympanometry.
View Article and Find Full Text PDFHypothesis: In this study, the thickness distribution of the fresh human eardrum was measured and possible thickness changes in successive stages of preservation and preparation were studied.
Methods: The thickness measurement was performed on axial fluorescence images taken perpendicularly through the membrane with a confocal microscope. The influence of fixation and preservation (in Cialit solution) on the thickness was also investigated.
Refractive index of tissue is an essential parameter in many bio-optical experiments, yet little data can be found in literature. Several methods have been proposed to measure refractive index in tissue samples, but all have specific limitations, such as low accuracy, the need for large amounts of tissue, or the complexity of the measurement setup. We propose a new method using a standard confocal microscope and requiring only small tissue samples.
View Article and Find Full Text PDFThickness data for the gerbil tympanic membrane, an extremely thin biological membrane, are presented. Thickness measurements were performed on fresh material using fluorescence images taken perpendicular through the membrane with a commercial confocal microscope. Thickness varies strongly across the membrane.
View Article and Find Full Text PDFThe function of the middle ear is to resolve the acoustic impedance mismatch between the air in the ear canal and the fluid of the inner ear. Without this impedance matching, very little acoustic energy would be absorbed into the cochlea. The first step in this process is the tympanic membrane (TM) converting sound in the ear canal into vibrations of the middle ear bones.
View Article and Find Full Text PDFThe connection between the long process and the lenticular process of the incus is extremely fine, so much so that some authors have treated the lenticular process as a separate bone. We review descriptions of the lenticular process that have appeared in the literature, and present some new histological observations. We discuss the dimensions and composition of the lenticular process and of the incudostapedial joint, and present estimates of the material properties for the bone, cartilage, and ligament of which they are composed.
View Article and Find Full Text PDFA phase-shift shadow moiré interferometer was used to measure the shape of the cat eardrum with a normal mobile malleus and with an immobile malleus as it was cyclically loaded with static middle-ear pressures up to +/-2.2 kPa. The shape was monitored throughout the loading and unloading phases, and three complete cycles were observed.
View Article and Find Full Text PDFHypothesis: Our hypothesis is that purulent otitis media and otitis media with effusion cause stiffness loss of the tympanic membrane. This loss of stiffness may be persistent and precede the development of retraction pockets and cholesteatoma.
Background: Postinflammatory changes such as retraction pockets and cholesteatoma develop in the pars flaccida and in the pars tensa of the tympanic membrane.