Background: Human Platelet Lysate (hPL) is a platelet-derived and growth factor-rich supplement for cell culture. It can be prepared from surplus platelet concentrates initially intended for transfusion. Amotosalen-based photochemical pathogen inactivation of platelet concentrates is used in a number of blood establishments worldwide to minimize the risk of pathogen transmission from donor to patient.
View Article and Find Full Text PDFHuman platelet lysate (hPL) is a supplement for cell culture media that can be derived from platelet concentrates. As not-for-profit blood establishments, we endorse the evolution of maximally exploiting the potential of donated blood and its derived components, including platelets. The decision to use platelet concentrates to supply hPL as a cell culture supplement should align with the principles and values that blood establishments hold towards the use of donated blood components in transfusion.
View Article and Find Full Text PDFBackground: We aimed to develop a single step method for the production of human platelet lysate (hPL). The method must result in high hPL yields, be closed system and avoid heparin use.
Study Design And Methods: The method aimed at using glass beads and calcium.
Background: Supplementation of the nicotinamide adenine dinucleotide (NAD) precursor nicotinamide riboside (NR) has recently been shown to increase life-span of cells, tissues, and entire organisms. [Correction added on 13 December 2019, after first online publication: In the preceding sentence, "adenine nicotinamide" was revised to "nicotinamide adenine."] The impact of NR on platelet longevity has not been tested.
View Article and Find Full Text PDFBackground: Transfusion of cryopreserved platelets (cryoplatelets) is not common but may replace standard liquid-preserved platelets (PLTs) in specific circumstances. To better understand cryoplatelet function, frozen concentrates from different manufacturing sites were compared.
Study Design And Methods: Cryoplatelets from Denver, Colorado (DEN); Sydney, Australia (SYD); and Ghent, Belgium (GHE) were compared (n = 6).