Publications by authors named "Will Ke Wang"

Objectives: We propose and validate a domain knowledge-driven classification model for diagnosing post-acute sequelae of SARS-CoV-2 infection (PASC), also known as Long COVID, using Electronic Health Records (EHRs) data.

Materials And Methods: We developed a robust model that incorporates features strongly indicative of PASC or associated with the severity of COVID-19 symptoms as identified in our literature review. The XGBoost tree-based architecture was chosen for its ability to handle class-imbalanced data and its potential for high interpretability.

View Article and Find Full Text PDF

Photoplethysmography is a key sensing technology which is used in wearable devices such as smartwatches and fitness trackers. Currently, photoplethysmography sensors are used to monitor physiological parameters including heart rate and heart rhythm, and to track activities like sleep and exercise. Yet, wearable photoplethysmography has potential to provide much more information on health and wellbeing, which could inform clinical decision making.

View Article and Find Full Text PDF

Background: Digital sensing solutions represent a convenient, objective, relatively inexpensive method that could be leveraged for assessing symptoms of various health conditions. Recent progress in the capabilities of digital sensing products has targeted the measurement of scratching during sleep, traditionally referred to as nocturnal scratching, in patients with atopic dermatitis or other skin conditions. Many solutions measuring nocturnal scratch have been developed; however, a lack of efforts toward standardization of the measure's definition and contextualization of scratching during sleep hampers the ability to compare different technologies for this purpose.

View Article and Find Full Text PDF

Digital clinical measures collected via various digital sensing technologies such as smartphones, smartwatches, wearables, and ingestible and implantable sensors are increasingly used by individuals and clinicians to capture the health outcomes or behavioral and physiological characteristics of individuals. Time series classification (TSC) is very commonly used for modeling digital clinical measures. While deep learning models for TSC are very common and powerful, there exist some fundamental challenges.

View Article and Find Full Text PDF

Consumer wearables, such as smart watches, are a promising tool for monitoring circadian health in "real world" settings. Bowman et al. demonstrate that circadian signals can be accurately captured through heart rate data obtained from wearables, opening up new possibilities for population-level studies on heart rate and circadian rhythm.

View Article and Find Full Text PDF

Background: Digital clinical measures collected via various digital sensing technologies such as smartphones, smartwatches, wearables, ingestibles, and implantables are increasingly used by individuals and clinicians to capture health outcomes or behavioral and physiological characteristics of individuals. Although academia is taking an active role in evaluating digital sensing products, academic contributions to advancing the safe, effective, ethical, and equitable use of digital clinical measures are poorly characterized.

Objective: We performed a systematic review to characterize the nature of academic research on digital clinical measures and to compare and contrast the types of sensors used and the sources of funding support for specific subareas of this research.

View Article and Find Full Text PDF

The dynamic time warping (DTW) algorithm is widely used in pattern matching and sequence alignment tasks, including speech recognition and time series clustering. However, DTW algorithms perform poorly when aligning sequences of uneven sampling frequencies. This makes it difficult to apply DTW to practical problems, such as aligning signals that are recorded simultaneously by sensors with different, uneven, and dynamic sampling frequencies.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionp0n0is2ug3ocemog64mib07jvirdo0tg): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once