The frequency of emerging disease is growing with ongoing human activity facilitating new host-pathogen interactions. Novel infection outcomes can also be shaped by the host microbiota. Caenorhabditis elegans nematodes experimentally colonised by a wild microbiota community and infected by the widespread animal pathogen, Staphylococcus aureus, have been shown to suffer higher mortality than those infected by the pathogen alone.
View Article and Find Full Text PDFWe present a laser-driven, bright, and broadband (50 to 1500 eV) soft-x-ray plasma source with <10 ps pulse duration. This source is employed in two complementary, laboratory-scale beamlines for time-resolved, magnetic resonant scattering and spectroscopy, as well as near-edge x-ray absorption fine-structure (NEXAFS) spectroscopy. In both beamlines, dedicated reflection zone plates (RZPs) are used as single optical elements to capture, disperse, and focus the soft x rays, reaching resolving powers up to E/ΔE > 1000, with hybrid RZPs at the NEXAFS beamline retaining a consistent E/ΔE > 500 throughout the full spectral range, allowing for time-efficient data acquisition.
View Article and Find Full Text PDFCamponotus floridanus ants show altered behaviors followed by a fatal summiting phenotype when infected with manipulating Ophiocordyceps camponoti-floridani fungi. Host summiting as a strategy to increase transmission is also observed with parasite taxa beyond fungi, including aquatic and terrestrial helminths and baculoviruses. The drastic phenotypic changes can sometimes reflect significant molecular changes in gene expression and metabolite concentrations measured in manipulated hosts.
View Article and Find Full Text PDFParasitic fungi produce proteins that modulate virulence, alter host physiology, and trigger host responses. These proteins, classified as a type of "effector," often act via protein-protein interactions (PPIs). The fungal parasite Ophiocordyceps camponoti-floridani (zombie ant fungus) manipulates Camponotus floridanus (carpenter ant) behavior to promote transmission.
View Article and Find Full Text PDFWe present time-resolved scanning x-ray microscopy measurements with picosecond photo-excitation via a tailored infrared pump laser at a scanning transmission x-ray microscope. Specifically, we image the laser-induced demagnetization and remagnetization of thin ferrimagnetic GdFe films proceeding on a few nanoseconds timescale. Controlling the heat load on the sample via additional reflector and heatsink layers allows us to conduct destruction-free measurements at a repetition rate of 50 MHz.
View Article and Find Full Text PDFMagnetic skyrmions are quasiparticles with nontrivial topology, envisioned to play a key role in next-generation data technology while simultaneously attracting fundamental research interest due to their emerging topological charge. In chiral magnetic multilayers, current-generated spin-orbit torques or ultrafast laser excitation can be used to nucleate isolated skyrmions on a picosecond time scale. Both methods, however, produce randomly arranged skyrmions, which inherently limits the precision on the location at which the skyrmions are nucleated.
View Article and Find Full Text PDFWe present an optical parametric chirped pulse amplification (OPCPA) system delivering 4.4 TW pulses centered at 810 nm with a sub-9 fs duration and a carrier-envelope phase stability of 350 mrad. The OPCPA setup pumped by sub-10 ps pulses from two Yb:YAG thin-disk lasers at 100 Hz repetition rate is optimized for a high conversion-efficiency.
View Article and Find Full Text PDFNanoparticles could conceal bioactive proteins during therapeutic delivery, avoiding side effects. Superparamagnetic iron oxide nanoparticles (SPIONs) coated with a temperature-sensitive polymer were tested for protein release. We show that coated SPIONs can entrap test proteins and release them in a temperature-controlled manner in a biological system.
View Article and Find Full Text PDFAnt-infecting fungi are globally distributed, host manipulating, specialist parasites that drive aberrant behaviors in infected ants, at a lethal cost to the host. An apparent increase in activity and wandering behaviors precedes a final summiting and biting behavior onto vegetation, which positions the manipulated ant in a site beneficial for fungal growth and transmission. We investigated the genetic underpinnings of host manipulation by: ( producing a high-quality hybrid assembly and annotation of the genome, () conducting laboratory infections coupled with RNAseq of and its host, , and () comparing these data to RNAseq data of and as a powerful method to identify gene expression patterns that suggest shared behavioral manipulation mechanisms across -ant species interactions.
View Article and Find Full Text PDFVarious parasite-host interactions that involve adaptive manipulation of host behavior display time-of-day synchronization of certain events. One example is the manipulated biting behavior observed in Carpenter ants infected with Ophiocordyceps unilateralis sensu lato. We hypothesized that biological clocks play an important role in this and other parasite-host interactions.
View Article and Find Full Text PDFThe integration of magnetic materials with semiconductors will lead to the development of the next spintronics devices such as spin field effect transistor (SFET), which is capable of both data storage and processing. While the fabrication and transport studies of lateral SFET have attracted greatly attentions, there are only few studies of vertical devices, which may offer the opportunity for the future three-dimensional integration. Here, we provide evidence of two-terminal electrical spin injection and detection in Fe/GaAs/Fe vertical spin-valves (SVs) with the GaAs layer of 50 nanometers thick and top and bottom Fe electrodes deposited by molecular beam epitaxy.
View Article and Find Full Text PDFA CPA laser system for high pulse energy at high average power has been developed. The system is based on Yb:YAG thin-disk technology. It provides two laser beams with more than 500 mJ pulse energy each at 100 Hz repetition rate and 2 ps pulse duration.
View Article and Find Full Text PDFA regenerative amplifier based on thin-disk technology has been upgraded and optimized. Within a CPA laser system chirped 1 ns pulses are amplified to more than 300 mJ pulse energy. In addition to the high pulse energy the amplifier shows a very good energy stability with 0.
View Article and Find Full Text PDFThe current-induced motion of magnetic domain walls (DWs) confined to nanostructures is of great interest for fundamental studies as well as for technological applications in spintronic devices. Here, we present magnetic images showing the depinning properties of pulse-current-driven domain walls in well-shaped Permalloy nanowires obtained using photoemission electron microscopy combined with x-ray magnetic circular dichroism. In the vicinity of the threshold current density (Jth = 4.
View Article and Find Full Text PDFColletotrichum species are fungal pathogens that devastate crop plants worldwide. Host infection involves the differentiation of specialized cell types that are associated with penetration, growth inside living host cells (biotrophy) and tissue destruction (necrotrophy). We report here genome and transcriptome analyses of Colletotrichum higginsianum infecting Arabidopsis thaliana and Colletotrichum graminicola infecting maize.
View Article and Find Full Text PDFRev Sci Instrum
June 2012
Reported here is the development and implementation of an integrated in situ magnetoelastic measurement setup with a MOKE magnetometer, repositionable electromagnet, and sample transfer/straining device. The former were used within a molecular beam epitaxial vacuum growth chamber. Consequently the magnetostriction constants for both Cr capped and uncapped Fe/GaAs(100) films were acquired without film oxidization occurring.
View Article and Find Full Text PDFPhytopathogens secrete effector proteins to manipulate their hosts for effective colonization. Hemibiotrophic fungi must maintain host viability during initial biotrophic growth and elicit host death for subsequent necrotrophic growth. To identify effectors mediating these opposing processes, we deeply sequenced the transcriptome of Colletotrichum higginsianum infecting Arabidopsis.
View Article and Find Full Text PDFThe upgraded photoinjector drive laser of the free-electron laser facility FLASH at DESY Hamburg is described in this paper. This laser produces trains of 800 and 2400 ultraviolet picosecond pulses at 1 MHz and 3 MHz repetition rate in the trains, respectively. The amplifying elements of the system are Nd:YLF-rods, which are pumped by fiber-coupled semiconductor diodes.
View Article and Find Full Text PDFMutations in LACERATA (LCR), FIDDLEHEAD (FDH), and BODYGUARD (BDG) cause a complex developmental syndrome that is consistent with an important role for these Arabidopsis genes in cuticle biogenesis. The genesis of their pleiotropic phenotypes is, however, poorly understood. We provide evidence that neither distorted depositions of cutin, nor deficiencies in the chemical composition of cuticular lipids, account for these features, instead suggesting that the mutants alleviate the functional disorder of the cuticle by reinforcing their defenses.
View Article and Find Full Text PDFA superconducting radio frequency (SRF) photoelectron injector is currently under construction by a collaboration of BESSY, DESY, FZD, and MBI. The project aims at the design and setup of a continuous-wave SRF injector including a diagnostics beamline for the ELBE free electron laser (FEL) and to address R&D issues on low emittance injectors for future light sources such as the BESSY FEL. Of critical importance for the injector performance is the control of the electron beam parameters.
View Article and Find Full Text PDFThis paper deals with the pulse-shaping properties of birefringent filters that feature an optical layout similar to a Solc fan filter. A simple computational model is given that explains the pulse-shaping process in the fan filter in two steps: First, the input pulse is split into several mutually delayed replicas due to the birefringence of the crystals. Second, these replicas interfere at the output polarizer of the filter and form the shaped output pulse.
View Article and Find Full Text PDFWe conducted a double-blind, randomized, placebo-controlled trial in Sao Tome and Principe to investigate the safety, tolerability and efficacy of chloroquine (CQ) combined with artesunate (AS) over CQ monotherapy. Four hundred children, aged 6-59 months, with acute uncomplicated Plasmodium falciparum malaria were randomized to receive a standard dose of CQ (25 mg/kg bodyweight) over 3 d or CQ + AS (4 mg/kg bodyweight) daily for 3 d. Children were followed-up for 28 d.
View Article and Find Full Text PDFINCOMPOSITA (INCO) is a MADS-box transcription factor and member of the functionally diverse StMADS11 clade of the MADS-box family. The most conspicuous feature of inco mutant flowers are prophylls initiated prior to first whorl sepals at lateral positions of the flower primordium. The developing prophylls physically interfere with subsequent floral organ development that results in aberrant floral architecture.
View Article and Find Full Text PDFExperimental results are presented from vacuum-ultraviolet free-electron laser (FEL) operating in the self-amplified spontaneous emission (SASE) mode. The generation of ultrashort radiation pulses became possible due to specific tailoring of the bunch charge distribution. A complete characterization of the linear and nonlinear modes of the SASE FEL operation was performed.
View Article and Find Full Text PDFA novel soft X-ray and optical short-pulse double resonance spectroscopic technique tailor-made to elucidate processes involving the optically forbidden S1 (2(1)A(g)) state of carotenoids in native biological samples (e.g., photosynthetic antenna complexes) is described.
View Article and Find Full Text PDF