Publications by authors named "Will Handley"

Nested sampling (NS) is a stochastic method for computing the log-evidence of a Bayesian problem. It relies on stochastic estimates of prior volumes enclosed by likelihood contours, which limits the accuracy of the log-evidence calculation. We propose to transform the prior volume estimation into a Bayesian inference problem, which allows us to incorporate a smoothness assumption for likelihood-prior-volume relations.

View Article and Find Full Text PDF

Physical theories that depend on many parameters or are tested against data from many different experiments pose unique challenges to statistical inference. Many models in particle physics, astrophysics and cosmology fall into one or both of these categories. These issues are often sidestepped with statistically unsound ad hoc methods, involving intersection of parameter intervals estimated by multiple experiments, and random or grid sampling of model parameters.

View Article and Find Full Text PDF

We propose a novel method for computing p-values based on nested sampling (NS) applied to the sampling space rather than the parameter space of the problem, in contrast to its usage in Bayesian computation. The computational cost of NS scales as log^{2}1/p, which compares favorably to the 1/p scaling for Monte Carlo (MC) simulations. For significances greater than about 4σ in both a toy problem and a simplified resonance search, we show that NS requires orders of magnitude fewer simulations than ordinary MC estimates.

View Article and Find Full Text PDF

We propose a method for transforming probability distributions so that parameters of interest are forced into a specified distribution. We prove that this approach is the maximum-entropy choice, and provide a motivating example, applicable to neutrino-hierarchy inference.

View Article and Find Full Text PDF

Building on the success of Quantum Monte Carlo techniques such as diffusion Monte Carlo, alternative stochastic approaches to solve electronic structure problems have emerged over the past decade. The full configuration interaction quantum Monte Carlo (FCIQMC) method allows one to systematically approach the exact solution of such problems, for cases where very high accuracy is desired. The introduction of FCIQMC has subsequently led to the development of coupled cluster Monte Carlo (CCMC) and density matrix quantum Monte Carlo (DMQMC), allowing stochastic sampling of the coupled cluster wave function and the exact thermal density matrix, respectively.

View Article and Find Full Text PDF