Background: Transitioning to the updated version of The Essentials has been a significant shift in nursing education, aimed at reversing national trends of declining new graduate competence. This article describes the curriculum revision journey undertaken by one program to align with the updated version of The Essentials.
Method: The university's Center for Teaching Excellence guided the redesign process using a structured, faculty-led, data-informed approach.
We evaluated the immunologic response to a novel vaccine regimen that included 2 doses of NVX-CoV2373 (Novavax) followed by 1 dose of BNT162b2 (Pfizer-BioNTech) monovalent booster vaccine. A durable neutralizing antibody response to Omicron BA.4/BA.
View Article and Find Full Text PDFWe report here the identification, characterization and three-dimensional (3D) structure determination of NaNga, a newly identified β-N-acetylgalactosaminidase from the Gram-negative soil bacterium Niabella aurantiaca DSM 17617. When recombinantly expressed in Escherichia coli, the enzyme selectively cleaved 4-nitrophenyl-N-acetyl-β-d-galactosamine (pNP-β-d-GalpNAc). The X-ray crystal structure of the protein was refined to 2.
View Article and Find Full Text PDFTpPL7A and TpPL7B, members of CAZy family PL7, act as β-glucuronan lyases. TpPL7A diverges by lacking the catalytic histidine, identified as the Brønsted base in PL7 alginate lyases. Our research, including TpPL7A's crystal structure, and mutagenesis studies, reveals a shared -β-elimination mechanism with a single tyrosine serving as both base and acid catalyst.
View Article and Find Full Text PDFAppl Environ Microbiol
October 2023
Humans consume alginate in the form of seaweed, food hydrocolloids, and encapsulations, making the digestion of this mannuronic acid (M) and guluronic acid (G) polymer of key interest for human health. To increase knowledge on alginate degradation in the gut, a gene catalog from human feces was mined for potential alginate lyases (ALs). The predicted ALs were present in nine species of the Bacteroidetes phylum, of which two required supplementation of an -acting AL, expected to mimic cross-feeding in the gut.
View Article and Find Full Text PDFDuring the past two decades, surface plasmon resonance (SPR) analysis has emerged as an important tool for studying protein-carbohydrate interactions, with several commercial instruments available. Binding affinities in the nM to mM range can be determined; however, there are pitfalls that require careful experimental design to avoid. Here we give an overview of each step in the SPR analysis from immobilization to data analysis, providing key points of consideration that will allow practitioners to achieve reliable and reproducible results.
View Article and Find Full Text PDFAffinity electrophoresis has long been used to study the interaction between proteins and large soluble ligands. The technique has been found to have great utility for the examination of polysaccharide binding by proteins, particularly carbohydrate-binding modules (CBMs). In recent years carbohydrate surface binding sites of proteins, mostly enzymes, have also been investigated by this method.
View Article and Find Full Text PDFAlginates are abundant marine anionic polysaccharides consumed by humans. Thus, over the years some understanding has emerged about alginate utilization by human gut microbiota (HGM). However, insights have been obtained only recently at the molecular level with regard to structure and function of alginate degrading and metabolizing enzymes from HGM.
View Article and Find Full Text PDFCorn bran is exceptionally rich in substituted glucuronoarabinoxylan polysaccharides, which are monoferuloylated and cross-linked by diferulic acid moieties. Here, we assessed the potential prebiotic activity of three enzymatically solubilized corn bran glucuronoarabinoxylans: medium feruloylated (FGAX-M), laccase cross-linked FGAX-M (FGAX-H), and alkali-treated FGAX-M devoid of feruloyl substitutions (FGAX-B). We examined the influence of these soluble FGAX samples on the gut microbiome composition and functionality during simulated colon fermentations, determined by 16S rRNA gene amplicon sequencing and assessment of short-chain fatty acid (SCFAs) production.
View Article and Find Full Text PDFCorn bran is an abundant coprocessing stream of corn-starch processing, rich in highly substituted, diferuloyl-cross-linked glucurono-arabinoxylan. The diferuloyl cross-links make the glucurono-arabinoxylan recalcitrant to enzymatic conversion and constitute a hindrance for designing selective enzymatic upgrading of corn glucurono-arabinoxylan. Here, we show that two bacterial feruloyl esterases, wtsFae1A and wtsFae1B, each having a carbohydrate-binding module of family 48, are capable of cleaving the ester bonds of the cross-linkages and releasing 5-5', 8-5', 8-5' benzofuran, and 8--4' diferulate from soluble and insoluble corn bran glucurono-arabinoxylan.
View Article and Find Full Text PDFXylan is a major constituent of plant cell walls and is a potential source of biomaterials, and the derived oligosaccharides have been shown to have prebiotic effects. Xylans can be highly substituted with different sugar moieties, which pose steric hindrance to the xylanases that catalyse the hydrolysis of the xylan backbone. One such substituent is α-D-glucuronic acid, which is linked to the O2' position of the β-1,4 D-xylopyranoses composing the main chain of xylans.
View Article and Find Full Text PDFKeratinases are proteases that can catalyze the degradation of insoluble keratinous biomass. Keratinases in protease family M36 (MEROPS database) are endo-acting proteases. In total, 687 proteases are classified in family M36.
View Article and Find Full Text PDFGlucuronan lyases (EC 4.2.2.
View Article and Find Full Text PDFAlginate is an anionic polysaccharide abundantly present in the cell walls of brown macroalgae. The enzymatic depolymerization is performed solely by alginate lyases (EC 4.2.
View Article and Find Full Text PDFKeratin is an insoluble and protein-rich epidermal material found in e.g. feather, wool, hair.
View Article and Find Full Text PDFWe set out to investigate the genetic adaptations of the marine fungus Paradendryphiella salina CBS112865 for degradation of brown macroalgae. We performed whole genome and transcriptome sequencing and shotgun proteomic analysis of the secretome of P. salina grown on three species of brown algae and under carbon limitation.
View Article and Find Full Text PDFAn amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFDesign strategies for small diameter vascular grafts are converging toward native-inspired tissue engineered grafts. A new automated technology is presented that combines a dip-spinning methodology for depositioning concentric cell-laden hydrogel layers, with an adapted solution blow spinning (SBS) device for intercalated placement of aligned reinforcement nanofibres. This additive manufacture approach allows the assembly of bio-inspired structural configurations of concentric cell patterns with fibres at specific angles and wavy arrangements.
View Article and Find Full Text PDFA three catalytic domain multi-enzyme; a CE1 ferulic acid esterase, a GH62 α-l-arabinofuranosidase and a GH10 β-d-1,4-xylanase was identified in a metagenome obtained from wastewater treatment sludge. The capability of the CE1-GH62-GH10 multi-enzyme to degrade arabinoxylan was investigated to examine the hypothesis that CE1-GH62-GH10 would degrade arabinoxylan more efficiently than the corresponding equimolar mix of the individual enzymes. CE1-GH62-GH10 efficiently catalyzed the production of xylopyranose, xylobiose, xylotriose, arabinofuranose and ferulic acid (FA) when incubated with insoluble wheat arabinoxylan (WAX-I) (k = 20.
View Article and Find Full Text PDFTissue regeneration is witnessing a significant surge in advanced medicine. It requires the interaction of scaffolds with different cell types for efficient tissue formation post-implantation. The presence of tissue subtypes in more complex organs demands the co-existence of different biomaterials showing different hydrolysis rate for specialized cell-dependent remodeling.
View Article and Find Full Text PDFBiosynthesis of starch is catalyzed by a cascade of enzymes. The activity of a large number of these enzymes depends on interaction with polymeric substrates via carbohydrate binding sites, which are situated outside of the catalytic site and its immediate surroundings including the substrate-binding crevice. Such secondary binding sites can belong to distinct starch binding domains (SBDs), classified as carbohydrate binding modules (CBMs), or be surface binding sites (SBSs) exposed on the surface of catalytic domains.
View Article and Find Full Text PDFIn the marine environment agar degradation is assured by bacteria that contain large agarolytic systems with enzymes acting in various endo- and exo-modes. Agarase A (AgaA) is an endo-glycoside hydrolase of family 16 considered to initiate degradation of agarose. Agaro-oligosaccharide binding at a unique surface binding site (SBS) in AgaA from Zobellia galactanivorans was investigated by computational methods in conjunction with a structure/sequence guided approach of site-directed mutagenesis probed by surface plasmon resonance binding analysis of agaro-oligosaccharides of DP 4-10.
View Article and Find Full Text PDF