There is a genetic contribution to fetal alcohol spectrum disorders (FASD), but the identification of candidate genes has been elusive. Ethanol may cause FASD in part by decreasing the adhesion of the developmentally critical L1 cell adhesion molecule through interactions with an alcohol binding pocket on the extracellular domain. Pharmacologic inhibition or genetic knockdown of ERK2 did not alter L1 adhesion, but markedly decreased ethanol inhibition of L1 adhesion in NIH/3T3 cells and NG108-15 cells.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2008
Prenatal ethanol exposure causes fetal alcohol spectrum disorders (FASD) in part by disrupting the neural cell adhesion molecule L1. L1 gene mutations cause neuropathological abnormalities similar to those of FASD. Ethanol and 1-butanol inhibit L1-mediated cell-cell adhesion (L1 adhesion), whereas 1-octanol antagonizes this action.
View Article and Find Full Text PDFThe L1 cell adhesion molecule has been implicated in ethanol teratogenesis as well as NMDAR-dependent long-term potentiation (LTP) of synaptic transmission, a process thought to be critical for neural development. Ethanol inhibits LTP at least in part by interacting with NMDA receptors. Ethanol also inhibits L1-mediated cell adhesion in a manner that is prevented by an octapeptide, D-NAPVSIPQ (D-NAP), as well as long chain alcohols such as 1-octanol.
View Article and Find Full Text PDFEthanol inhibition of L1-mediated cell adhesion may contribute to the spectrum of neurological, behavioral and morphological abnormalities associated with prenatal ethanol exposure. We showed previously that the neuroprotective peptides NAPVSIPQ (NAP) and SALLRSIPA (SAL) antagonize ethanol inhibition of L1 adhesion and prevent ethanol-induced growth retardation in mouse whole embryo culture. Here we ask whether NAP and SAL also prevent ethanol-induced major malformations of the nervous system.
View Article and Find Full Text PDFIncreasing evidence suggests that ethanol damages the developing nervous system partly by disrupting the L1 cell adhesion molecule. Ethanol inhibits L1-mediated cell adhesion, and compounds that antagonize this action also prevent ethanol-induced embryotoxicity. Two such compounds are the small peptides NAPVSIPQ (NAP) and SALLRSIPA (SAL).
View Article and Find Full Text PDFNAPVSIPQ (NAP), an active fragment of the glial-derived activity-dependent neuroprotective protein, is protective at femtomolar concentrations against a wide array of neural insults and prevents ethanol-induced fetal wastage and growth retardation in mice. NAP also antagonizes ethanol inhibition of L1-mediated cell adhesion (ethanol antagonism). We performed an Ala scanning substitution of NAP to determine the role of ethanol antagonism and neuroprotection in NAP prevention of ethanol embryotoxicity.
View Article and Find Full Text PDF1-Octanol antagonizes ethanol inhibition of L1-mediated cell adhesion and prevents ethanol teratogenesis in mouse whole embryo culture. Herein, we identify a new series of alcohol antagonists and study their mechanism of action. Cell aggregation assays were carried out in ethanol-sensitive, human L1-transfected NIH/3T3 cells in the absence and presence of 100 mM ethanol or 2 mM 1-butanol and candidate antagonists.
View Article and Find Full Text PDFJ Pharmacol Exp Ther
October 2002
Ethanol inhibits cell-cell adhesion mediated by the L1 cell adhesion molecule. 1-Octanol potently antagonizes this cellular action of ethanol and also prevents ethanol-induced dysmorphology and cell death in mouse whole embryo culture. NAPVSIPQ (NAP) and SALLRSIPA (SAL) are active peptide fragments of two neuroprotective proteins: activity-dependent neuroprotective protein and activity-dependent neurotrophic factor.
View Article and Find Full Text PDFIncreasing evidence suggests that alcohols act within specific binding pockets of selective neural proteins; however, antagonists at these sites have not been identified. 1-Alcohols from methanol through 1-butanol inhibit with increasing potency the cell-cell adhesion mediated by the immunoglobulin cell adhesion molecule L1. An abrupt cutoff exists after 1-butanol, with 1-pentanol and higher 1-alcohols showing no effect.
View Article and Find Full Text PDFAlcohol Clin Exp Res
November 1999
Background: The L1 cell adhesion molecule is expressed as alternatively spliced neuronal and nonneuronal isoforms. We have reported that in transfected fibroblasts, ethanol variably inhibits cell-cell adhesion mediated by the nonneuronal isoform of human L1. In contrast, ethanol consistently inhibits morphogenetic changes and cell-cell adhesion in NG108-15 cells treated with OP-1 (BMP-7), a powerful inducer of L1 and N-CAM gene expression.
View Article and Find Full Text PDFEthanol inhibits L1-mediated cell-cell adhesion in fibroblast cell lines stably transfected with human L1. Here we show that this action of ethanol is present in only a subset of transfected NIH/3T3 and L cell clonal cell lines. All L1-expressing cell lines had higher levels of cell adhesion than cell lines transfected with empty vector.
View Article and Find Full Text PDFMental retardation, hydrocephalus, and agenesis of the corpus callosum are observed both in fetal alcohol syndrome (FAS) and in children with mutations in the gene for the cell adhesion molecule L1. We studied the effects of ethanol on cell-cell adhesion in mouse fibroblasts transfected with human L1. L1-transfected fibroblasts exhibited increased cell-cell adhesion compared with wild-type or vector-transfected controls.
View Article and Find Full Text PDFLiving organotypic cocultures of rat thalamic and cortical explants were used to examine the effects of blocking action potential activity on the morphological development of axons in the mammalian neocortex. Studies in vivo have suggested that blocking sodium channel-dependent activity influences the growth characteristics of thalamocortical axons during development. We have extended these observations by using an in vitro system that affords more direct observational analysis of the early events of axonal growth in an accessible cellular environment DiI-labeled thalamocortical axons grow exuberantly into the target cortex and establish axonal connections that reflect the events of early thalamocortical afferent development.
View Article and Find Full Text PDFGenetic manipulation offers great potential for studying the molecular and cellular processes which control or regulate the complex developmental properties of neurons. Gene transfer into neurons, however, is notoriously difficult. In this study we have used a replication-defective adenovirus (Adv/RSV beta gal), expressing beta-galactosidase (beta-gal) as a reporter gene, to infect dissociated cultures of rat hippocampal neurons and hippocampal slice cultures.
View Article and Find Full Text PDFOrganotypic cocultures of thalamic and cortical explants have recently been used to study the development of the thalamocortical axonal network in the mammalian neocortex. To explore the possibility of genetically manipulating organotypic explants, rat thalamocortical (TC) cocultures were infected with the recombinant adenovirus, Adv/RSV beta gal. Infection of the cortical explants resulted in long-term expression (2 weeks) of the reporter gene (beta-galactosidase) with no significant alterations to the structural integrity of the explants.
View Article and Find Full Text PDFMethylmalonyl-CoA mutase (MCM) is a nuclear-encoded mitochondrial matrix enzyme. We have reported characterization of murine MCM and cloning of a murine MCM cDNA and now describe the murine Mut locus, its promoter and evidence for tissue-specific variation in MCM mRNA, enzyme and holo-enzyme levels. The Mut locus spans 30 kb and contains 13 exons constituting a unique transcription unit.
View Article and Find Full Text PDFStrategies for somatic gene therapy must consider the metabolic consequences of expressing the recombinant gene product in addition to methods for gene transfer and expression. We describe studies of propionate metabolism in cultured cells transfected with methylmalonyl CoA mutase (MCM), the enzyme deficient in mut methylmalonic acidemia. Transfection of MCM into mut fibroblasts restores propionate metabolism to normal levels in a dose-dependent manner.
View Article and Find Full Text PDFMethylmalonic aciduria can be caused by mutations in the gene encoding the methylmalonyl coenzyme A mutase apoenzyme (mut) or genes required for the provision of cofactor B12 (cbl). The mut and cbl forms are classically differentiated by somatic cell complementation. We describe a novel method for differential diagnosis of mut and cbl methylmalonic aciduria using DNA-mediated gene transfer of a methylmalonyl CoA mutase cDNA clone.
View Article and Find Full Text PDFThe MUT locus encoding the enzyme methylmalonyl-CoA mutase is defective in mut forms of methylmalonic acidemia. This locus has been mapped to chromosome 6p12-21.1.
View Article and Find Full Text PDFMethylmalonyl-CoA mutase (MCM) is an adenosylcobalamin-dependent enzyme that catalyses isomerization between methylmalonyl-CoA and succinyl-CoA (3-carboxypropionyl-CoA). Genetic deficiency of this enzyme in man causes an often fatal disorder of organic acid metabolism termed mut methylmalonicacidaemia. We report cloning of a mouse MCM cDNA and the characterization of its primary structure and biological function.
View Article and Find Full Text PDF