The nuclear hormone receptor retinoic acid receptor-related orphan C2 (RORC2, also known as RORγt) is a promising target for the treatment of autoimmune diseases. A small molecule, inverse agonist of the receptor is anticipated to reduce production of IL-17, a key proinflammatory cytokine. Through a high-throughput screening approach, we identified a molecule displaying promising binding affinity for RORC2, inhibition of IL-17 production in Th17 cells, and selectivity against the related RORA and RORB receptor isoforms.
View Article and Find Full Text PDFPurpose: Physical activity (PA) is important for recovery after a breast cancer diagnosis; however, women's motivation to engage in PA can be impacted by disease and/or treatment, and can therefore be a challenge. This study explored factors associated with PA levels during chemotherapy among women with breast cancer.
Method: The study had a cross-sectional descriptive and comparative design using a study-specific questionnaire.
A series of 4-(3-biaryl)quinolines with sulfone substituents on the terminal aryl ring (8) was prepared as potential LXR agonists. High affinity LXRbeta ligands with generally modest binding selectivity over LXRalpha and excellent agonist potency in LXR functional assays were identified. Many compounds had LXRbeta binding IC(50) values <10 nM while the most potent had EC(50) values <1.
View Article and Find Full Text PDFA series of phenyl sulfone substituted quinoxaline were prepared and the lead compound 13 (WYE-672) was shown to be a tissue selective LXR Agonist. Compound 13 demonstrated partial agonism for LXRbeta in kidney HEK-293 cells but did not activate Gal4 LXRbeta fusion proteins in huh-7 liver cells. Although 13 showed potent binding affinity to LXRbeta (IC(50) = 53 nM), it had little binding affinity for LXRalpha (IC(50) > 1.
View Article and Find Full Text PDFBioorg Med Chem Lett
January 2010
A series of 1-(3-aryloxyaryl)benzimidazoles incorporating a sulfone substituent (6) was prepared. High affinity LXR ligands were identified (LXRbeta binding IC(50) values <10nM), some with excellent agonist potency and efficacy in a functional assay of LXR activity measuring ABCA1 mRNA increases in human macrophage THP1 cells. The compounds were typically stable in liver microsome preparations and had good oral exposure in mice.
View Article and Find Full Text PDFReplacement of a quinoline with an imidazo[1,2-a]pyridine in a series of liver X receptor (LXR) agonists incorporating a [3-(sulfonyl)aryloxyphenyl] side chain provided high affinity LXR ligands 7. In functional assays of LXR activity, good agonist potency and efficacy were found for several analogs.
View Article and Find Full Text PDFA series of quinoline-3-carboxamide containing sulfones was prepared and found to have good binding affinity for LXRbeta and moderate binding selectivity over LXRalpha. The 8-Cl quinoline analog 33 with a high TPSA score, displayed 34-fold binding selectivity for LXRbeta over LXRalpha (LXRbeta IC(50)=16nM), good activity for inducing ABCA1 gene expression in a THP macrophage cell line, desired weak potency in the LXRalpha Gal4 functional assay, and low blood-brain barrier penetration in rat.
View Article and Find Full Text PDFBioorg Med Chem Lett
January 2010
A series of 4-(3-aryloxyaryl)quinolines with sulfone substituents on the terminal aryl ring (7) was prepared as LXR agonists. High affinity LXR ligands with excellent agonist potency and efficacy in functional assays of LXR activity were identified. In general, these sulfone agonists were equal to or superior to previously described alcohol and amide analogs in terms of affinity, functional potency, and microsomal stability.
View Article and Find Full Text PDFA series of 4-(3-aryloxyaryl)quinolines with alcohol substituents on the terminal aryl ring was prepared as potential LXR agonists, in which an alcohol group replaced an amide in previously reported amide analogs. High affinity LXR ligands with excellent agonist potency and efficacy in a functional model of LXR activity were identified, demonstrating that alcohols can substitute for amides while retaining LXR activity. The most potent compound was 5b which had an IC(50)=3.
View Article and Find Full Text PDFA series of 4-(amido-biarylether)-quinolines was prepared as potential LXR agonists. Appropriate substitution with amide groups provided high affinity LXR ligands, some with excellent potency and efficacy in functional assays of LXR activity. Novel amide 4g had a binding IC(50)=1.
View Article and Find Full Text PDFA series of substituted 2-benzyl-3-aryl-7-trifluoromethylindazoles were prepared as LXR modulators. These compounds were partial agonists in transactivation assays when compared to 1 (T0901317) and were slightly weaker with respect to potency and efficacy on LXRalpha than on LXRbeta. Lead compounds in this series 12 (WAY-252623) and 13 (WAY-214950) showed less lipid accumulation in HepG2 cells than potent full agonists 1 and 3 (WAY-254011) but were comparable in efficacy to 1 and 3 with respect to cholesterol efflux in THP-1 foam cells, albeit weaker in potency.
View Article and Find Full Text PDFA series of potent and binding selective LXRbeta agonists was developed using the previously reported non-selective LXR ligand WAY-254011 as a structural template. With the aid of molecular modeling, it was found that 2,3-diMe-Ph, 2,5-diMe-Ph, and naphthalene substituted quinoline acetic acids (such as quinoline 33, 37, and 38) showed selectivity for LXRbeta over LXRalpha in binding assays.
View Article and Find Full Text PDFA series of phenyl acetic acid based quinolines was prepared as LXR modulators. An SAR study in which the C-3 and C-8 positions of the quinoline core were varied led to the identification of two potent LXR agonists 23 and 27. Both compounds displayed good binding affinity for LXRbeta and LXRalpha, and increased expression of ABCA1 in THP-1 cells.
View Article and Find Full Text PDFA structure-based approach was used to optimize our new class of quinoline LXR modulators leading to phenyl acetic acid substituted quinolines 15 and 16. Both compounds displayed good binding affinity for LXRbeta and LXRalpha and were potent activators in LBD transactivation assays. The compounds also increased expression of ABCA1 and stimulated cholesterol efflux in THP-1 cells.
View Article and Find Full Text PDFThe structures of the liver X receptor LXRbeta (NR1H2) have been determined in complexes with two synthetic ligands, T0901317 and GW3965, to 2.1 and 2.4 A, respectively.
View Article and Find Full Text PDFManufacturing of healthy wholegrain foods demands knowledge of process-induced changes in macro-, micro- and non-nutrients. The high content of dietary fibre is a challenge in relation to good product texture and sensory quality. The stability and bioavailability of bioactive compounds have a marked influence on the health effects of cereal foods.
View Article and Find Full Text PDFThe dioxin receptor is a ligand-dependent transcription factor that binds to target DNA sequences (xenobiotic responsive elements, XREs) following ligand-dependent dimerization with its partner factor, Arnt (aryl hydrocarbon receptor nuclear translocator). Both factors contain an N-terminal basic region helix-loop-helix motif mediating dimerization and subsequent DNA binding. In this study we investigate the possible role of Arnt in agonistic and antagonistic effects of the dioxin receptor ligand alpha-naphthoflavone (ANF).
View Article and Find Full Text PDFThe basic region/helix-loop-helix dioxin receptor mediates signal transduction by dioxin (2,3,7,8-tetrachlorodibenzo-p-dioxin). Upon ligand binding the dioxin receptor is converted from a latent, non-DNA binding form to a form that directly interacts with target genes by binding to dioxin-responsive transcriptional control elements. We have purified by conventional and DNA affinity chromatographic procedures the ligand-activated, DNA binding form of dioxin receptor to examine its architecture and functional properties.
View Article and Find Full Text PDFThe rat glutathione S-transferase Ya gene xenobiotic response element (XRE) has both constitutive and xenobiotic-inducible activity. We present evidence that the XRE is regulated by both the constitutive C/EBP transcription factor and the xenobiotic-activated dioxin receptor. A ligand-activated XRE-binding protein was shown to be dioxin receptor by specific antibody immunodepletion and binding of highly purified receptor.
View Article and Find Full Text PDFThe intracellular basic region/helix-loop-helix (bHLH) dioxin receptor mediates signal transduction by dioxin (2,3,7,8-tetrachlorodibenzo-p-dioxin) and functions as a ligand-activated DNA binding protein directly interacting with target genes by binding to dioxin response elements. Here we show that the partially purified, ligand-bound receptor alone could not bind target DNA. In contrast, DNA binding by the receptor could be induced by addition of a cytosolic auxiliary activity which functionally and biochemically corresponded to the bHLH factor Arnt.
View Article and Find Full Text PDFPolychlorinated aromatic hydrocarbons such as 2,3,7,8-tetrachlorodibenzofuran (TCDF) have been shown to induce transcription of the cytochrome P-450IA1 gene by activating an intracellular receptor protein (the Ah- or dioxin receptor) to bind to specific DNA sequences, termed xenobiotic response elements (XREs). However, the expression and inducibility of the cytochrome P-450IA1 activity exhibit tissue-specific differences. With regard to the TCDF induction response, we have examined three human cell types of endodermal (the hepatoma cell line HepG2), ectodermal (normal keratinocytes), and mesodermal origin (normal fibroblasts).
View Article and Find Full Text PDFDioxin stimulates transcription from the cytochrome P-450IA1 promoter by interaction with the intracellular dioxin receptor. Upon binding of ligand, the receptor is converted to a form which specifically interacts in vitro with two dioxin-responsive positive control elements located in close proximity to each other about 1 kb upstream of the rat cytochrome P-450IA1 gene transcription start point. In rat liver, the cytochrome P-450IA1 gene is marked at the chromatin level by two DNase I-hypersensitive sites that map to the location of the response elements and exist prior to induction of transcription by the dioxin receptor ligand beta-naphthoflavone.
View Article and Find Full Text PDFTo reconstitute the molecular mechanisms underlying the cellular response to soluble receptor ligands, we have exploited a cell-free system that exhibits signal- (dioxin-)induced activation of the latent cytosolic dioxin receptor to an active DNA-binding species. The DNA-binding properties of the in vitro-activated form were qualitatively indistinguishable from those of in vivo-activated nuclear receptor extracted from dioxin-treated cells. In vitro activation of the receptor by dioxin was dose dependent and was mimicked by other dioxin receptor ligands in a manner that followed the rank order of their relative affinities for the receptor in vitro and their relative potencies to induce target gene transcription in vivo.
View Article and Find Full Text PDFThe activation in vitro of dioxin and glucocorticoid receptors from a non-DNA binding to a DNA binding state was characterized. Ligand-free dioxin and glucocorticoid receptors were partially co-purified from rat liver cytosol, and both receptors sedimented at 9 S following labeling with the respective ligand. The 9 S forms of the dioxin and glucocorticoid receptors have previously been shown to represent heteromeric complexes containing the Mr approximately equal to 90,000 heat shock protein.
View Article and Find Full Text PDFThe dioxin receptor is a gene regulatory protein which exhibits many structural and functional similarities to steroid hormone receptors. In this study we compare the subunit composition of two forms of the dioxin receptor, sedimenting at approximately 9S and approximately 6S respectively, which are present in nuclear extract from wild-type Hepa 1c1c7 mouse hepatoma cells following treatment in vivo with dioxin. The nuclear approximately 9S receptor form contained the 90 kd heat shock protein, hsp90.
View Article and Find Full Text PDF