Publications by authors named "Wilhelm Just"

Plasmalogens, the most prominent ether (phospho)lipids in mammals, are structural components of most cellular membranes. Due to their physicochemical properties and abundance in the central nervous system, a role of plasmalogens in neurotransmission has been proposed, but conclusive data are lacking. Here, we targeted this issue in the glyceronephosphate O-acyltransferase (Gnpat) KO mouse, a model of complete deficiency in ether lipid biosynthesis.

View Article and Find Full Text PDF

In this review article, we summarize current knowledge on peroxisome biogenesis/functions and the role that small GTPases may play in these processes. Precise intracellular distribution of cell organelles requires their regulated association to microtubules and the actin cytoskeleton. In this respect, RhoGDP/RhoGTP favor binding of peroxisomes to microtubules and actin filaments.

View Article and Find Full Text PDF

Ethanolamine plasmalogens constitute a group of ether glycerophospholipids that, due to their unique biophysical and biochemical properties, are essential components of mammalian cellular membranes. Their importance is emphasized by the consequences of defects in plasmalogen biosynthesis, which in humans cause the fatal disease rhizomelic chondrodysplasia punctata (RCDP). In the present lipidomic study, we used fibroblasts derived from RCDP patients, as well as brain tissue from plasmalogen-deficient mice, to examine the compensatory mechanisms of lipid homeostasis in response to plasmalogen deficiency.

View Article and Find Full Text PDF

Rhizomelic chondrodysplasia punctata (RCDP) is a developmental disorder characterized by hypotonia, cataracts, abnormal ossification, impaired motor development, and intellectual disability. The underlying etiology of RCDP is a deficiency in the biosynthesis of ether phospholipids, of which plasmalogens are the most abundant form in nervous tissue and myelin; however, the role of plasmalogens in the peripheral nervous system is poorly defined. Here, we used mouse models of RCDP and analyzed the consequence of plasmalogen deficiency in peripheral nerves.

View Article and Find Full Text PDF

A proteomics screen was initiated to identify Rab proteins regulating transport to and away from peroxisomes. Mass spectrometry-based protein correlation profiling of rat liver organelles and immunofluorescence analysis of the peroxisome candidate Rab proteins revealed Rab6, Rab10, Rab14 and Rab18 to associate with the peroxisomal membrane. While Rab14 localized to peroxisomes predominantly in its dominant-active form, other Rab proteins associated with peroxisomes in both their GTP- and GDP-bound state.

View Article and Find Full Text PDF

Background: Mice with peroxisome deficiency in neural cells (Nestin-Pex5-/-) develop a neurodegenerative phenotype leading to motor and cognitive disabilities and early death. Major pathologies at the end stage of disease include severe demyelination, axonal degeneration and neuroinflammation. We now investigated the onset and progression of these pathological processes, and their potential interrelationship.

View Article and Find Full Text PDF

Isolated defects of ether lipid (EL) biosynthesis in humans cause rhizomelic chondrodysplasia punctata type 2 and type 3, serious peroxisomal disorders. Using a previously described mouse model [Rodemer, C., Thai, T.

View Article and Find Full Text PDF

In Alzheimer's disease (AD), lipid alterations are present early during disease progression. As some of these alterations point towards a peroxisomal dysfunction, we investigated peroxisomes in human postmortem brains obtained from the cohort-based, longitudinal Vienna-Transdanube Aging (VITA) study. Based on the neuropathological Braak staging for AD on one hemisphere, the patients were grouped into three cohorts of increasing severity (stages I-II, III-IV, and V-VI, respectively).

View Article and Find Full Text PDF

PIds (phosphoinositides) are phosphorylated derivatives of the membrane phospholipid PtdIns that have emerged as key regulators of many aspects of cellular physiology. We have discovered a PtdIns3P-synthesizing activity in peroxisomes of Saccharomyces cerevisiae and have demonstrated that the lipid kinase Vps34p is already associated with peroxisomes during biogenesis. However, although Vps34 is required, it is not essential for optimal peroxisome biogenesis.

View Article and Find Full Text PDF

The current view of peroxisome inheritance provides for the formation of new peroxisomes by both budding from the endoplasmic reticulum and autonomous division. Here we investigate peroxisome-cytoskeleton interactions and show by proteomics, biochemical and immunofluorescence analyses that actin, non-muscle myosin IIA (NMM IIA), RhoA, Rho kinase II (ROCKII) and Rab8 associate with peroxisomes. Our data provide evidence that (i) RhoA in its inactive state, maintained for example by C.

View Article and Find Full Text PDF