Hippocampal sharp wave/ripple oscillations are a prominent pattern of collective activity, which consists of a strong overall increase of activity with superimposed (140 - 200 Hz) ripple oscillations. Despite its prominence and its experimentally demonstrated importance for memory consolidation, the mechanisms underlying its generation are to date not understood. Several models assume that recurrent networks of inhibitory cells alone can explain the generation and main characteristics of the ripple oscillations.
View Article and Find Full Text PDFUnlabelled: Human brain imaging has revealed that stimulus-induced activity does generally not simply add to the pre-stimulus activity, but rather builds in a non-additive way on this activity. Here we investigate this subject at the single neuron level and address the question whether and to what extent a strong form of non-additivity where activity drops post-cue is present in different areas of monkey cortex, including prefrontal and agranular frontal areas, during a perceptual decision making task involving action and tactic selection. Specifically we analyze spike train data recorded in vivo from the posterior dorsomedial prefrontal cortex (pmPFC), the supplementary motor area (SMA) and the presupplementary motor area (pre-SMA).
View Article and Find Full Text PDFJellyfish nerve nets provide insight into the origins of nervous systems, as both their taxonomic position and their evolutionary age imply that jellyfish resemble some of the earliest neuron-bearing, actively-swimming animals. Here, we develop the first neuronal network model for the nerve nets of jellyfish. Specifically, we focus on the moon jelly and the control of its energy-efficient swimming motion.
View Article and Find Full Text PDFWe study temporal correlations of interspike intervals, quantified by the network-averaged serial correlation coefficient (SCC), in networks of both current- and conductance-based purely inhibitory integrate-and-fire neurons. Numerical simulations reveal transitions to negative SCCs at intermediate values of bias current drive and network size. As bias drive and network size are increased past these values, the SCC returns to zero.
View Article and Find Full Text PDFThe theoretical description of nonrenewal stochastic systems is a challenge. Analytical results are often not available or can be obtained only under strong conditions, limiting their applicability. Also, numerical results have mostly been obtained by ad hoc Monte Carlo simulations, which are usually computationally expensive when a high degree of accuracy is needed.
View Article and Find Full Text PDFFirst-passage-time problems are ubiquitous across many fields of study, including transport processes in semiconductors and biological synapses, evolutionary game theory and percolation. Despite their prominence, first-passage-time calculations have proven to be particularly challenging. Analytical results to date have often been obtained under strong conditions, leaving most of the exploration of first-passage-time problems to direct numerical computations.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
May 2015
We consider a leaky integrate-and-fire neuron with deterministic subthreshold dynamics and a firing threshold that evolves as an Ornstein-Uhlenbeck process. The formulation of this minimal model is motivated by the experimentally observed widespread variation of neural firing thresholds. We show numerically that the mean first-passage time can depend nonmonotonically on the noise amplitude.
View Article and Find Full Text PDF