Many upcoming experiments in antimatter research require low-energy antiproton beams. With a kinetic energy in the order of 100 keV, the standard magnetic components to control and focus the beams become less effective. Therefore, electrostatic components are being developed and installed in transfer lines and storage rings.
View Article and Find Full Text PDFAccurate knowledge of the spatial magnetic field distribution is necessary when measuring field gradients. Therefore, a MEMS magnetic field gradiometer is reported, consisting of two identical, but independent laterally oscillating masses on a single chip. The sensor is actuated by Lorentz force and read out by modulation of the light flux passing through stationary and moving arrays of the chip.
View Article and Find Full Text PDFSmall-scale and distortion-free measurement of electric fields is crucial for applications such as surveying atmospheric electrostatic fields, lightning research, and safeguarding areas close to high-voltage power lines. A variety of measurement systems exist, the most common of which are field mills, which work by picking up the differential voltage of the measurement electrodes while periodically shielding them with a grounded electrode. However, all current approaches are either bulky, suffer from a strong temperature dependency, or severely distort the electric field requiring a well-defined surrounding and complex calibration procedures.
View Article and Find Full Text PDF