J Opt Soc Am A Opt Image Sci Vis
November 2013
In autodyne interferometry, the beating between the reference beam and the signal beam takes place inside the laser cavity and therefore the laser fulfills simultaneously the roles of emitter and detector of photons. In these conditions, the laser relaxation oscillations play a leading role, both in the laser quantum noise, which determines the signal-to-noise ratio (SNR), and also in the laser dynamics, which determines the response time of the interferometer. In the present study, we have experimentally analyzed the SNR and the response time of a laser optical feedback imaging (LOFI) interferometer based on a Nd(3+) microchip laser, with a relaxation frequency in the megahertz range.
View Article and Find Full Text PDFA new kind of plenoptic imaging system based on Laser Optical Feedback Imaging (LOFI) is presented and is compared to another previously existing device based on microlens array. Improved photometric performances, resolution and depth of field are obtained at the price of a slow point by point scanning. Main properties of plenoptic microscopes such as numerical refocusing on any curved surface or aberrations compensation are both theoretically and experimentally demonstrated with a LOFI-based device.
View Article and Find Full Text PDFJ Opt Soc Am A Opt Image Sci Vis
January 2013
In autodyne interferometry, the beating between the reference beam and the signal beam takes place inside the laser cavity and therefore the laser fulfills simultaneously the roles of the emitter and the detector of photons. In these conditions, the laser relaxation oscillations play a leading role, both in the laser quantum noise that determines the signal-to-noise ratio (SNR) and also in the laser dynamics that determine the response time of the interferometer. In the present study, we have theoretically analyzed the SNR and the response time of a laser optical feedback imaging (LOFI) setup based on an autodyne interferometer.
View Article and Find Full Text PDFJ Opt Soc Am A Opt Image Sci Vis
August 2012
In this paper we present an experimental setup based on laser optical feedback imaging (LOFI) and on synthetic aperture with translational scanning by galvanometric mirrors for the purpose of making deep and resolved images through scattering media. We provide real two-dimensional optical synthetic aperture image of a fixed scattering target with a moving aperture and an isotropic resolution. We demonstrate theoretically and experimentally that we can keep microscope resolution beyond the working distance.
View Article and Find Full Text PDFJ Opt Soc Am A Opt Image Sci Vis
November 2012
In this paper we study the origin and the effect of amplitude and phase noise on laser optical feedback imaging associated with a synthetic aperture (SA) imaging system. Amplitude noise corresponds to photon noise and acts as an additive noise; it can be reduced by increasing the global measurement time. Phase noise can be divided in three families: random, sinusoidal, and drift phase noise; we show that it acts as a multiplicative noise.
View Article and Find Full Text PDFJ Opt Soc Am A Opt Image Sci Vis
April 2012
In this paper, we compare the sensitivity of two imaging configurations, both based on laser optical feedback imaging (LOFI). The first one is direct imaging, which uses conventional optical focalization on target, and the second one is made by a synthetic aperture (SA) laser, which uses numerical focalization. We show that SA configuration allows us to obtain good resolutions with high working distance and that the drawback of SA imagery is that it has a worse photometric balance in comparison to a conventional microscope.
View Article and Find Full Text PDFFrequency-shifted feedback (FSF) lasers are potential candidates for long distance telemetry due to the appearance of beatings in the noise spectrum at the output of a homodyne interferometer: the frequencies of these beatings vary linearly with the path delay. In this Letter we demonstrate that these beatings also occur in the heterodyne mixing of two identical, but distinct, FSF lasers. This phenomenon is explained by the passive cavity model and is exploited to characterize the time-spectrum properties of FSF lasers.
View Article and Find Full Text PDFJ Opt Soc Am A Opt Image Sci Vis
August 2011
Using an Nd:YVO₄ microchip laser with a relaxation frequency in the megahertz range, we have experimentally compared a heterodyne interferometer based on a Michelson configuration with an autodyne interferometer based on the laser optical feedback imaging (LOFI) method regarding their signal-to-noise ratios. In the heterodyne configuration, the beating between the reference beam and the signal beam is realized outside the laser cavity, while in the autodyne configuration, the wave beating takes place inside the laser cavity, and the relaxation oscillations of the laser intensity then play an important part. For a given laser output power, object under investigation, and detection noise level, we have determined the amplification gain of the LOFI interferometer compared to the heterodyne interferometer.
View Article and Find Full Text PDF