Publications by authors named "Wilfried Endlicher"

The climate change and the proceeding urbanization create future health challenges. Consequently, more people around the globe will be impaired by extreme weather events, such as heat waves. This study investigates the causes for the emergence of surface urban heat islands and its change during heat waves in 70 European cities.

View Article and Find Full Text PDF

Background: Ever since higher overall mortality rates due to heat stress were reported during the European heat waves of 2003 and 2006, the relation between heat waves and disease-specific events has been an object of scientific study. The effects of heat waves on the morbidity and mortality of persons with chronic lung disease remain unclear.

Methods: We conducted a systematic search using PubMed, the Cochrane Library, and Google Advanced Search to identify relevant studies published between 1990 and 2015.

View Article and Find Full Text PDF

Background: Urban populations are highly vulnerable to the adverse effects of heat, with heat-related mortality showing intra-urban variations that are likely due to differences in urban characteristics and socioeconomic status.

Objectives: We investigated the influence of urban green and urban blue, that is, urban vegetation and water bodies, on heat-related excess mortality in the elderly > 65 years old in Lisbon, Portugal, between 1998 and 2008.

Methods: We used remotely sensed data and geographic information to determine the amount of urban vegetation and the distance to bodies of water (the Atlantic Ocean and the Tagus Estuary).

View Article and Find Full Text PDF

Humans spend most of their time in confined spaces and are hence primarily exposed to the direct influence of indoor climate. The Universal Thermal Climate Index (UTCI) was obtained in 31 rooms (eight buildings) in Berlin, Germany, during summer 2013 and 2014. The indoor UTCI was determined from measurements of both air temperature and relative humidity and from data of mean radiant temperature and air velocity, which were either measured or modeled.

View Article and Find Full Text PDF

Research in the field of atmospheric science and epidemiology has long recognized the health effects of seasonal and meteorological conditions. However, little scientific knowledge exists to date about the impacts of atmospheric parameters on human mortality in tropical regions. Working within the scope of this systematic review, this investigation conducted a literature search using different databases; original research articles were chosen according to pre-defined inclusion and exclusion criteria.

View Article and Find Full Text PDF

Background: Summer heat waves with temperature extremes are becoming more frequent with growing numbers in morbidity and mortality in patients with respiratory diseases. The aim of this study was to evaluate the ramifications of heat stress (temperature >25 °C) on the health status of patients with pulmonary arterial hypertension (PAH).

Methods: Fifteen patients with PAH (mean age = 66.

View Article and Find Full Text PDF

Background: A home based tele-monitoring system was developed to assess the effects of heat stress (days > 25°C) on clinical and functional status in patients with chronic obstructive pulmonary disease (COPD).

Methods: Sixty-two COPD patients (GOLD II-IV) were randomized into a tele-monitoring Group (TG, N = 32) or Control Group (CG, N = 30). Tele-monitoring included 1) daily clinical status (COPD Assessment Test-CAT), 2) daily lung function and 3) weekly 6-minute walk test (6MWT).

View Article and Find Full Text PDF

There is substantial evidence that both temperature and air pollution are predictors of mortality. Thus far, few studies have focused on the potential interactive effects between the thermal environment and different measures of air pollution. Such interactions, however, are biologically plausible, as (extreme) temperature or increased air pollution might make individuals more susceptible to the effects of each respective predictor.

View Article and Find Full Text PDF

A substantial number of epidemiological studies have demonstrated an association between atmospheric conditions and human all-cause as well as cause-specific mortality. However, most research has been performed in industrialised countries, whereas little is known about the atmosphere-mortality relationship in developing countries. Especially with regard to modifications from non-atmospheric conditions and intra-population differences, there is a substantial research deficit.

View Article and Find Full Text PDF

This paper is based on the results of three air quality studies conducted in Buenos Aires in Berlin, and in German spas between 2003 and 2007. A high comparability of results was ensured by using the same sampling techniques and analytical methods. Total particle sampling was achieved by active sampling of fine (PM2.

View Article and Find Full Text PDF

Source apportionment of 13 organic compounds, elemental carbon and organic carbon of ambient PM(10) and PM(1) was performed with positive matrix factorization (PMF). Samples were collected at three sites characterized by different vegetation influences in Berlin, Germany in 2010. The aim was to determine organic, mainly biogenic sources and their impact on urban aerosol collected in a densely populated region.

View Article and Find Full Text PDF

Background: Mortality exhibits seasonal variations, which to a certain extent can be considered as mid-to long-term influences of meteorological conditions. In addition to atmospheric effects, the seasonal pattern of mortality is shaped by non-atmospheric determinants such as environmental conditions or socioeconomic status. Understanding the influence of season and other factors is essential when seeking to implement effective public health measures.

View Article and Find Full Text PDF

This study assessed the effect of temperature and thermal atmospheric conditions on all-cause and cardiovascular mortality in Bangladesh. In particular, differences in the response to elevated temperatures between urban and rural areas were investigated. Generalized additive models (GAMs) for daily death counts, adjusted for trend, season, day of the month and age were separately fitted for urban and rural areas.

View Article and Find Full Text PDF

Deposition of PM(10) particles to several types of urban surfaces was investigated within this study. Antimony was chosen as a tracer element to calculate dry deposition velocities for PM(10), since antimony proved to be present almost exclusively in PM(10) particles in ambient urban air. During 18 months, eight sampling sites in Berlin and Karlsruhe, two cities in Germany, were operated.

View Article and Find Full Text PDF

In large cities such as Berlin, human mortality rates increase during intense heat waves. Analysis of relevant data from north-eastern Germany revealed that, during the heat waves that occurred between 1990 and 2006, health risks were higher for older people in both rural and urban areas, but that, during the two main heat waves within that 17-year period of time, the highest mortality rates were from the city of Berlin, and in particular from its most densely built-up districts. Adaptation measures will need to be developed, particularly within urban areas, in order to cope with the expected future intensification of heat waves due to global climate change.

View Article and Find Full Text PDF