Around the world, citrus production and quality are threatened by diseases caused by fungi, bacteria, and viruses. Citrus growers are currently demanding technological solutions to reduce the economic losses caused by citrus diseases. In this context, image analysis techniques have been widely used to detect citrus diseases, extracting discriminant features from an input image to distinguish between healthy and abnormal cases.
View Article and Find Full Text PDFPurpose: Computer-aided diagnosis (CAD) systems on breast ultrasound (BUS) aim to increase the efficiency and effectiveness of breast screening, helping specialists to detect and classify breast lesions. CAD system development requires a set of annotated images, including lesion segmentation, biopsy results to specify benign and malignant cases, and BI-RADS categories to indicate the likelihood of malignancy. Besides, standardized partitions of training, validation, and test sets promote reproducibility and fair comparisons between different approaches.
View Article and Find Full Text PDFThis article presents a learning algorithm for dendrite morphological neurons (DMN) based on stochastic gradient descent (SGD). In particular, we focus on a DMN topology that comprises spherical dendrites, smooth maximum activation function nodes, and a softmax output layer, whose original learning algorithm is performed in two independent stages: (1) dendrites' centroids are learned by k-means, and (2) softmax layer weights are adjusted by gradient descent. A drawback of this learning method is that both stages are unplugged; once dendrites' centroids are defined, they keep static during weights learning, so no feedback is performed to correct the dendrites' positions to improve classification performance.
View Article and Find Full Text PDFBreast ultrasound (BUS) image classification in benign and malignant classes is often based on pre-trained convolutional neural networks (CNNs) to cope with small-sized training data. Nevertheless, BUS images are single-channel gray-level images, whereas pre-trained CNNs learned from color images with red, green, and blue (RGB) components. Thus, a gray-to-color conversion method is applied to fit the BUS image to the CNN's input layer size.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2022
In the radiomics workflow, machine learning builds classification models from a set of input features. However, some features can be irrelevant and redundant, reducing the classification performance. This paper proposes using the Genetic Programming (GP) algorithm to automatically construct a reduced number of independent and relevant radiomic features.
View Article and Find Full Text PDFIEEE Trans Neural Netw Learn Syst
August 2023
Dendrite morphological neurons (DMNs) are neural models for pattern classification, where dendrites are represented by a geometric shape enclosing patterns of the same class. This study evaluates the impact of three dendrite geometries-namely, box, ellipse, and sphere-on pattern classification. In addition, we propose using smooth maximum and minimum functions to reduce the coarseness of decision boundaries generated by typical DMNs, and a softmax layer is attached at the DMN output to provide posterior probabilities from weighted dendrites responses.
View Article and Find Full Text PDFA typical feature of hyperbox-based dendrite morphological neurons (DMN) is the generation of sharp and rough decision boundaries that inaccurately track the distribution shape of classes of patterns. This feature is because the minimum and maximum activation functions force the decision boundaries to match the faces of the hyperboxes. To improve the DMN response, we introduce a dendritic model that uses smooth maximum and minimum functions to soften the decision boundaries.
View Article and Find Full Text PDFThe automatic segmentation of breast tumors in ultrasound (BUS) has recently been addressed using convolutional neural networks (CNN). These CNN-based approaches generally modify a previously proposed CNN architecture or they design a new architecture using CNN ensembles. Although these methods have reported satisfactory results, the trained CNN architectures are often unavailable for reproducibility purposes.
View Article and Find Full Text PDFBackground And Objectives: Computer-aided diagnosis (CAD) systems are intended to assist specialists in the interpretation of images aiming to support clinical conduct. In breast tumor classification, CAD systems involve a feature extraction stage, in which morphological features are used to describe the tumor shape. Such features are expected to satisfy at least two conditions: (1) discriminant to distinguish between benign and malignant tumors, and (2) invariant to geometric transformations.
View Article and Find Full Text PDFDescribed here is a novel texture extraction method based on auto-mutual information (AMI) for classifying breast lesions. The objective is to extract discriminating information found in the non-linear relationship of textures in breast ultrasound (BUS) images. The AMI method performs three basic tasks: (i) it transforms the input image using the ranklet transform to handle intensity variations of BUS images acquired with distinct ultrasound scanners; (ii) it extracts the AMI-based texture features in the horizontal and vertical directions from each ranklet image; and (iii) it classifies the breast lesions into benign and malignant classes, in which a support-vector machine is used as the underlying classifier.
View Article and Find Full Text PDFComput Methods Programs Biomed
January 2018
Background And Objective: Conventional computer-aided diagnosis (CAD) systems for breast ultrasound (BUS) are trained to classify pathological classes, that is, benign and malignant. However, from a clinical perspective, this kind of classification does not agree totally with radiologists' diagnoses. Usually, the tumors are assessed by using a BI-RADS (Breast Imaging-Reporting and Data System) category and, accordingly, a recommendation is emitted: annual study for category 2 (benign), six-month follow-up study for category 3 (probably benign), and biopsy for categories 4 and 5 (suspicious of malignancy).
View Article and Find Full Text PDFPurpose: This paper presents an adaptive contrast enhancement method based on sigmoidal mapping function (SACE) used for improving the computerized segmentation of breast lesions on ultrasound.
Methods: First, from the original ultrasound image an intensity variation map is obtained, which is used to generate local sigmoidal mapping functions related to distinct contextual regions. Then, a bilinear interpolation scheme is used to transform every original pixel to a new gray level value.
The study described here explored a fully automatic segmentation approach based on texture analysis for breast lesions on ultrasound images. The proposed method involves two main stages: (i) In lesion region detection, the original gray-scale image is transformed into a texture domain based on log-Gabor filters. Local texture patterns are then extracted from overlapping lattices that are further classified by a linear discriminant analysis classifier to distinguish between the "normal tissue" and "breast lesion" classes.
View Article and Find Full Text PDFMedical images (MI) are relevant sources of information for detecting and diagnosing a large number of illnesses and abnormalities. Due to their importance, this study is focused on breast ultrasound (BUS), which is the main adjunct for mammography to detect common breast lesions among women worldwide. On the other hand, aiming to enhance data security, image fidelity, authenticity, and content verification in e-health environments, MI watermarking has been widely used, whose main goal is to embed patient meta-data into MI so that the resulting image keeps its original quality.
View Article and Find Full Text PDFBreast ultrasound (BUS) is considered the most important adjunct method to mammography for diagnosing cancer. However, this image modality suffers from an intrinsic artifact called speckle noise, which degrades spatial and contrast resolution and obscures the screened anatomy. Hence, it is necessary to reduce speckle artifacts before performing image analysis by means of computer-aided diagnosis systems, for example.
View Article and Find Full Text PDF