Carbon suspension electrodes are promising for flow-assisted electrochemical energy storage systems. They serve as flowable electrodes in electrolyte solutions of flow batteries, or flow capacitors. They can also be used for other applications such as capacitive deionization of water.
View Article and Find Full Text PDFClassic rotating engines are powerful and broadly used but are of complex design and difficult to miniaturize. It has long remained challenging to make large-stroke, high-speed, high-energy microengines that are simple and robust. We show that torsionally stiffened shape memory nanocomposite fibers can be transformed upon insertion of twist to store and provide fast and high-energy rotations.
View Article and Find Full Text PDFDrying graphene oxide (GO) films are subject to extensive wrinkling, which largely affects their final properties. Wrinkles were shown to be suitable in biotechnological applications; however, they negatively affect the electronic properties of the films. Here, we report on wrinkle tuning and patterning of GO films under stress-controlled conditions during drying.
View Article and Find Full Text PDFHigh electromechanical coupling is critical to perform effective conversion between mechanical and electrical energy for various applications of electrostrictive polymers. Herein, a giant electrostriction effect is reported in liquid crystalline graphene-doped dielectric elastomers. The materials are formulated by a phase-transfer method which allows the solubilization of graphenic monolayers in nonpolar solvents.
View Article and Find Full Text PDFNovel carbon nanotube based electrodes of microbial fuel cells (MFC) have been developed. MFC is a promising technology for the wastewater treatment and the production of electrical energy from redox reactions of natural substrates. Performances of such bio-electrochemical systems depend critically on the structure and properties of the electrodes.
View Article and Find Full Text PDFUsing an emulsion road and optimizing the dispersion process, we prepare polymer carbone nanotubes (CNT) and polymer reduced graphene oxide (rGO) composites. The introduction of conductive nanoparticles into polymer matrices modifies the electronic properties of the material. We show that these materials exhibit giant electrostriction coefficients in the intermediate filler concentration (below 1 wt %).
View Article and Find Full Text PDFGraphene oxide (GO), the main precursor of graphene-based materials made by solution processing, is known to be very stiff. Indeed, it has a Young's modulus comparable to steel, on the order of 300 GPa. Despite its very high stiffness, we show here that GO is superflexible.
View Article and Find Full Text PDFGraphene flakes with giant shape anisotropy are extensively used to establish connectedness electrical percolation in various heterogeneous systems. However, the percolation behaviour of graphene flakes has been recently predicted to be far more complicated than generally anticipated on the basis of excluded volume arguments. Here we confirm experimentally that graphene flakes self-assemble into nematic liquid crystals below the onset of percolation.
View Article and Find Full Text PDFNear-percolated CNT-polymer composites are promising high-permittivity materials. The main challenge in the field consists of finding compromises that allow high permittivity and low losses in frequency ranges of interest. Using an emulsion approach and optimizing the size of the droplets and the curing procedure, we obtain unprecedented performances and measure giant permittivity larger than 20,000 at 100 Hz along with a conductivity below 10(-4) S/m.
View Article and Find Full Text PDFUniquely in the world of materials, polymers deformed at high temperature and subsequently quenched at low temperature, memorize the temperature at which they have been processed. Polymers can even memorize multiple temperatures. This temperature memory is reflected by a maximum of residual stress restored at the temperature of initial processing.
View Article and Find Full Text PDFWe have compared the properties and resistance to DA fouling of a carbon nanotube fiber (CNTF) microelectrode to a traditional carbon fiber (CF) microelectrode. These two materials show comparable electrochemical activities for outer-sphere and inner-sphere redox reactions. Although the CNTF might have a higher intrinsic RC constant, thus limiting its high-frequency behavior, the CNTF shows a significantly higher durability than the CF in terms of electrode stability.
View Article and Find Full Text PDFSingle-walled carbon nanotubes can be spun in a polyvinyl alcohol stream to produce nanocomposite fibres. We use a facile ester linking between both elements to create improved fibres which exhibit outstanding enhancements in the absence of post-processing stages, providing a promising alternative based on a chemical method.
View Article and Find Full Text PDFLangmuir monolayers have been extensively investigated by various experimental techniques. These studies allowed an in-depth understanding of the molecular conformation in the layer, phase transitions, and the structure of the multilayer. As the monolayer is compressed and the surface pressure is increased beyond a critical value, usually occurring in the minimal closely packed molecular area, the monolayer fractures and/or folds, forming multilayers in a process referred to as collapse.
View Article and Find Full Text PDF