Purpose: The aim of this study is to determine immune-related biomarkers to predict effective antitumor immunity in myelodysplastic syndrome (MDS) during immunotherapy (IMT, αCTLA-4, and/or αPD-1 antibodies) and/or hypomethylating agent (HMA).
Experimental Design: Peripheral blood samples from 55 patients with MDS were assessed for immune subsets, T-cell receptor (TCR) repertoire, mutations in 295 acute myeloid leukemia (AML)/MDS-related genes, and immune-related gene expression profiling before and after the first treatment.
Results: Clinical responders treated with IMT ± HMA but not HMA alone showed a significant expansion of central memory (CM) CD8+ T cells, diverse TCRβ repertoire pretreatment with increased clonality and emergence of novel clones after the initial treatment, and a higher mutation burden pretreatment with subsequent reduction posttreatment.
The aim of this study is to investigate whether the peripheral blood (PB) can serve as a surrogate immune-microenvironment to bone marrow for genetic and immune monitoring in myelodysplastic syndrome (MDS). We compared the composition of T cell subsets and somatic mutation burden in 36 pairs of PB and matching bone marrow aspirate (BMA) using multi-parameter flow cytometry and NGS-based targeted sequencing analysis, respectively. Our immune-subset and NGS-based mutation analysis of BMA showed significant concordance with those of PB in MDS.
View Article and Find Full Text PDFDespite substantial advances in the treatment of acute myeloid leukemia (AML), only 30% of patients survive more than 5 years. Therefore, new therapeutics are much needed. Here, we present a novel therapeutic strategy targeting PR1, an HLA-A2 restricted myeloid leukemia antigen.
View Article and Find Full Text PDF