With the onset of the COVID-19 pandemic 4 years ago, viral sequencing continues to document numerous individual mutations in the viral spike protein across many variants. To determine the ability of vaccine-mediated humoral immunity to combat continued SARS-CoV-2 evolution, we construct a comprehensive panel of pseudoviruses harboring each individual mutation spanning 4 years of the pandemic to understand the fitness cost and resistance benefits of each. These efforts identify numerous mutations that escape from vaccine-induced humoral immunity.
View Article and Find Full Text PDFSARS-CoV-2 and other sarbecoviruses continue to threaten humanity, highlighting the need to characterize common mechanisms of viral immune evasion for pandemic preparedness. Cytotoxic lymphocytes are vital for antiviral immunity and express NKG2D, an activating receptor conserved among mammals that recognizes infection-induced stress ligands (e.g.
View Article and Find Full Text PDFSince the COVID-19 pandemic began in 2020, viral sequencing has documented 131 individual mutations in the viral spike protein across 48 named variants. To determine the ability of vaccine-mediated humoral immunity to keep pace with continued SARS-CoV-2 evolution, we assessed the neutralization potency of sera from 76 vaccine recipients collected after 2 to 6 immunizations against a comprehensive panel of mutations observed during the pandemic. Remarkably, while many individual mutations that emerged between 2020 and 2022 exhibit escape from sera following primary vaccination, few escape boosted sera.
View Article and Find Full Text PDFAmong the risk factors for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), ABO(H) blood group antigens are among the most recognized predictors of infection. However, the mechanisms by which ABO(H) antigens influence susceptibility to COVID-19 remain incompletely understood. The receptor-binding domain (RBD) of SARS-CoV-2, which facilitates host cell engagement, bears significant similarity to galectins, an ancient family of carbohydrate-binding proteins.
View Article and Find Full Text PDFHuman leukocyte antigen (HLA)-E binds epitopes derived from HLA-A, HLA-B, HLA-C and HLA-G signal peptides (SPs) and serves as a ligand for CD94/NKG2A and CD94/NKG2C receptors expressed on natural killer and T cell subsets. We show that among 16 common classical HLA class I SP variants, only 6 can be efficiently processed to generate epitopes that enable CD94/NKG2 engagement, which we term 'functional SPs'. The single functional HLA-B SP, known as HLA-B/-21M, induced high HLA-E expression, but conferred the lowest receptor recognition.
View Article and Find Full Text PDFEnveloped viruses co-opt host glycosylation pathways to decorate their surface proteins. As viruses evolve, emerging strains can modify their glycosylation patterns to influence host interactions and subvert immune recognition. Still, changes in viral glycosylation or their impact on antibody protection cannot be predicted from genomic sequences alone.
View Article and Find Full Text PDFThe emergence of the antigenically distinct and highly transmissible Omicron variant highlights the possibility of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) immune escape due to viral evolution. This continued evolution, along with the possible introduction of new sarbecoviruses from zoonotic reservoirs, may evade host immunity elicited by current SARS-CoV-2 vaccines. Identifying cross-reactive antibodies and defining their epitope(s) can provide templates for rational immunogen design strategies for next-generation vaccines.
View Article and Find Full Text PDFViruses employ a variety of strategies to escape or counteract immune responses, including depletion of cell surface major histocompatibility complex class I (MHC-I), that would ordinarily present viral peptides to CD8 cytotoxic T cells. As part of a screen to elucidate biological activities associated with individual severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) viral proteins, we found that ORF7a reduced cell surface MHC-I levels by approximately fivefold. Nevertheless, in cells infected with SARS-CoV-2, surface MHC-I levels were reduced even in the absence of ORF7a, suggesting additional mechanisms of MHC-I down-regulation.
View Article and Find Full Text PDFHIV broadly neutralizing antibodies (bNAbs) are capable of both blocking viral entry and driving innate immune responses against HIV-infected cells through their Fc region. Vaccination or productive infection results in a polyclonal mixture of class-switched immunoglobulin G (IgG) antibodies composed of four subclasses, each encoding distinct Fc regions that differentially engage innate immune functions. Despite evidence that innate immunity contributes to protection, the relative contribution of individual IgG subclasses is unknown.
View Article and Find Full Text PDFAntiviral NK cell activity is regulated through the interaction of activating and inhibitory NK cell receptors with their ligands on infected cells. HLA class I molecules serve as ligands for most killer cell immunoglobulin-like receptors (KIRs), but no HLA class I ligands for the inhibitory NK cell receptor KIR2DL5 have been identified to date. Using a NK cell receptor/ligand screening approach, we observed no strong binding of KIR2DL5 to HLA class I or class II molecules, but confirmed that KIR2DL5 binds to the poliovirus receptor (PVR, CD155).
View Article and Find Full Text PDFViruses employ a variety of strategies to escape or counteract immune responses, including depletion of cell surface major histocompatibility complex class I (MHC-I), that would ordinarily present viral peptides to CD8+ cytotoxic T cells. As part of a screen to elucidate biological activities associated with individual SARS-CoV-2 viral proteins, we found that ORF7a reduced cell surface MHC-I levels by approximately 5-fold. Nevertheless, in cells infected with SARS-CoV-2, surface MHC-I levels were reduced even in the absence of ORF7a, suggesting additional mechanisms of MHC-I downregulation.
View Article and Find Full Text PDFAntibodies to SARS-CoV-2 are central to recovery and immunity from COVID-19. However, the relationship between disease severity and the repertoire of antibodies against specific SARS-CoV-2 epitopes an individual develops following exposure remains incompletely understood. Here, we studied seroprevalence of antibodies to specific SARS-CoV-2 and other betacoronavirus antigens in a well-annotated, community sample of convalescent and never-infected individuals obtained in August 2020.
View Article and Find Full Text PDFThe human hematopoietic stem cell harbors remarkable regenerative potential that can be harnessed therapeutically. During early development, hematopoietic stem cells in the fetal liver undergo active expansion while simultaneously retaining robust engraftment capacity, yet the underlying molecular program responsible for their efficient engraftment remains unclear. Here, we profile 26,407 fetal liver cells at both the transcriptional and protein level including ~7,000 highly enriched and functional fetal liver hematopoietic stem cells to establish a detailed molecular signature of engraftment potential.
View Article and Find Full Text PDFRecent surveillance has revealed the emergence of the SARS-CoV-2 Omicron variant (BA.1/B.1.
View Article and Find Full Text PDFPatients with cancer are more likely to have impaired immune responses to SARS-CoV-2 vaccines. We study the breadth of responses against SARS-CoV-2 variants after primary vaccination in 178 patients with a variety of tumor types and after booster doses in a subset. Neutralization of alpha, beta, gamma, and delta SARS-CoV-2 variants is impaired relative to wildtype, regardless of vaccine type.
View Article and Find Full Text PDFRecent surveillance has revealed the emergence of the SARS-CoV-2 Omicron variant (BA.1/B.1.
View Article and Find Full Text PDFWhile human leukocyte antigen (HLA) and HLA-like proteins comprise an overwhelming majority of known ligands for NK-cell receptors, the interactions of NK-cell receptors with non-conventional ligands, particularly carbohydrate antigens, is less well described. We previously found through a bead-based HLA screen that KIR3DS1, a formerly orphan member of the killer-cell immunoglobulin-like receptor (KIR) family, binds to HLA-F. In this study, we assessed the ligand binding profile of KIR3DS1 to cell lines using Fc fusion constructs, and discovered that KIR3DS1-Fc exhibited binding to several human cell lines including ones devoid of HLA.
View Article and Find Full Text PDFBackground: Understanding immunogenicity and effectiveness of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines is critical to guide rational use.
Methods: We compared the immunogenicity of mRNA-1273, BNT-162b2, and Ad26.COV2.
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants that escape convalescent and vaccine-induced antibody responses has renewed focus on the development of broadly protective T-cell-based vaccines. Here, we apply structure-based network analysis and assessments of HLA class I peptide stability to define mutationally constrained CD8 T cell epitopes across the SARS-CoV-2 proteome. Highly networked residues are conserved temporally among circulating variants and sarbecoviruses and disproportionately impair spike pseudotyped lentivirus infectivity when mutated.
View Article and Find Full Text PDFDefining factors that govern CD8 T cell immunodominance is critical for the rational design of vaccines for viral pathogens. Here, we assess the contribution of human leukocyte antigen (HLA) class-I-peptide stability for 186 optimal HIV epitopes across 18 HLA alleles using transporter associated with antigen processing (TAP)-deficient mono-allelic HLA-expressing cell lines. We find that immunodominant HIV epitopes increase surface stabilization of HLA class-I molecules in comparison to subdominant epitopes.
View Article and Find Full Text PDFHumanized bone marrow-liver-thymus (HuBLT) mice are a revolutionary small-animal model that has facilitated the study of human immune function and human-restricted pathogens, including human immunodeficiency virus type 1 (HIV-1). These mice recapitulate many aspects of acute and chronic HIV-1 infection, but exhibit weak and variable T-cell responses when challenged with HIV-1, hindering our ability to confidently detect HIV-1-specific responses or vaccine effects. To identify the cause of this, we comprehensively analyzed T-cell development, diversity, and function in HuBLT mice.
View Article and Find Full Text PDF