Publications by authors named "Wilfred van der Donk"

Lantibiotics are post-translationally modified peptide antimicrobial agents that are synthesized with an N-terminal leader sequence and a C-terminal propeptide. Their maturation involves enzymatic dehydration of Ser and Thr residues in the precursor peptide to generate unsaturated amino acids, which react intramolecularly with nearby cysteines to form cyclic thioethers termed lanthionines and methyllanthionines. The role of the leader peptide in lantibiotic biosynthesis has been subject to much speculation.

View Article and Find Full Text PDF

Lacticin 481 is a lanthionine-containing bacteriocin (lantibiotic) produced by Lactococcus lactis subsp. lactis. The final steps of lacticin 481 biosynthesis are proteolytic removal of an N-terminal leader sequence from the prepeptide LctA and export of the mature lantibiotic.

View Article and Find Full Text PDF

Lipoxygenases (LOs) catalyze lipid peroxidation and have been implicated in a number of human diseases connected to oxidative stress and inflammation. These enzymes have also attracted considerable attention due to large kinetic isotope effects (30-80) for the rate-limiting hydrogen abstraction step with linoleic acid (LA) as substrate. Herein, we report kinetic isotope effects (KIEs) in the reactions of three human LOs (platelet 12-hLO, reticulocyte 15-hLO-1, and epithelial 15-hLO-2) with arachidonic acid (AA).

View Article and Find Full Text PDF

Phosphonic acids encompass a common yet chemically diverse class of natural products that often possess potent biological activities. Here we report that, despite the significant structural differences among many of these compounds, their biosynthetic routes contain an unexpected common intermediate, 2-hydroxyethyl-phosphonate, which is synthesized from phosphonoacetaldehyde by a distinct family of metal-dependent alcohol dehydrogenases (ADHs). Although the sequence identity of the ADH family members is relatively low (34-37%), in vitro biochemical characterization of the homologs involved in biosynthesis of the antibiotics fosfomycin, phosphinothricin tripeptide, and dehydrophos (formerly A53868) unequivocally confirms their enzymatic activities.

View Article and Find Full Text PDF

Stabilization of biologically active peptides is a major goal in peptide-based drug design. Cyclization is an often-used strategy to enhance resistance of peptides toward protease degradation and simultaneously improve their affinity for targets by restricting their conformational flexibility. Among the various cyclization strategies, the use of thioether crosslinks has been successful for various peptides including enkephalin.

View Article and Find Full Text PDF

Phosphite dehydrogenase (PTDH) is a unique NAD-dependent enzyme that catalyzes the oxidation of inorganic phosphite to phosphate. The enzyme has great potential for cofactor regeneration, and mechanistic studies have provided some insight into the residues that are important for catalysis. In this investigation, pre-steady-state studies were performed on the His6-tagged wild-type (WT) enzyme, several active site mutants, a thermostable mutant (12X-PTDH), and a thermostable mutant with dual cofactor specificity (NADP-12X-PTDH).

View Article and Find Full Text PDF

Lantibiotic synthetases generate intramolecular thioether cross-links within peptides through the Michael-type addition of cysteines onto dehydroamino acids originating from Ser and Thr. Presented here is an assay that readily distinguishes between enzymatic and nonenzymatic formation of these cross-links. The results demonstrate unequivocally that lacticin 481 synthetase can generate non-native thioether cross-links.

View Article and Find Full Text PDF

Phosphinothricin tripeptide (PTT, phosphinothricylalanylalanine) is a natural-product antibiotic and potent herbicide that is produced by Streptomyces hygroscopicus ATCC 21705 (ref. 1) and Streptomyces viridochromogenes DSM 40736 (ref. 2).

View Article and Find Full Text PDF

Nisin is a post-translationally modified antimicrobial peptide that has been widely used in the food industry for several decades. It contains five cyclic thioether cross-links of varying sizes that are installed by a single enzyme, NisC, that catalyzes the addition of cysteines to dehydroamino acids. The recent x-ray crystal structure of NisC has provided the first insights into the catalytic residues responsible for the cyclization step during nisin biosynthesis.

View Article and Find Full Text PDF

The current need for antibiotics with novel target molecules has coincided with advances in technical approaches for the structural and functional analysis of the lantibiotics, which are ribosomally synthesized peptides produced by gram-positive bacteria. These peptides have antibiotic or morphogenetic activity and are structurally defined by the presence of unusual amino acids introduced by posttranslational modification. Lantibiotics are complex polycyclic molecules formed by the dehydration of select Ser and Thr residues and the intramolecular addition of Cys thiols to the resulting unsaturated amino acids to form lanthionine and methyllanthionine bridges, respectively.

View Article and Find Full Text PDF

The mechanism by which prostaglandin synthase converts arachidonic acid to prostaglandin G(2), creating five new chiral centers in the process, is still incompletely understood. The first radical intermediate has been characterized by EPR spectroscopy but subsequent proposed intermediates have not succumbed to detection. We report the synthesis of 7-thiaarachidonic acid designed to stabilize one of the proposed radical intermediates, which may allow its detection.

View Article and Find Full Text PDF

Lantibiotics are ribosomally synthesized and post-translationally modified peptide antibiotics. The modifications involve dehydration of Ser and Thr residues to generate dehydroalanines and dehydrobutyrines, followed by intramolecular attack of cysteines onto the newly formed dehydro amino acids to produce cyclic thioethers. LctM performs both processes during the biosynthesis of lacticin 481.

View Article and Find Full Text PDF

Lantibiotic synthetases catalyze the dehydration of Ser and Thr residues in their peptide substrates to dehydroalanine (Dha) and dehydrobutyrine (Dhb), respectively, followed by the conjugate addition of Cys residues to the Dha and Dhb residues to generate the thioether cross-links lanthionine and methyllanthionine, respectively. In this study ten conserved residues were mutated in the dehydratase domain of the best characterized family member, lacticin 481 synthetase (LctM). Mutation of His244 and Tyr408 did not affect dehydration activity with the LctA substrate whereas mutation of Asn247, Glu261, and Glu446 considerably slowed down dehydration and resulted in incomplete conversion.

View Article and Find Full Text PDF

This protocol describes the methodology for the synthesis of dehydroalanine (Dha)-containing peptides and illustrates their use in convergent ligation strategies for the preparation of peptide conjugates. A nonproteinogenic amino acid, Fmoc-Se-phenylselenocysteine (SecPh), can be prepared in high yield over four synthetic steps and be conveniently incorporated into peptides by standard solid-phase peptide synthesis techniques. Globally deprotected peptides containing phenylselenocysteine can be converted to dehydrated peptides following a chemoselective, mild oxidation with hydrogen peroxide or sodium periodate (i.

View Article and Find Full Text PDF

Dehydroamino acids are valuable building blocks that are a challenge to incorporate synthetically into unprotected peptides. Lantibiotic synthetases possess dehydration activity that converts Ser and Thr residues in their peptide substrates into dehydroalanine and dehydrobutyrine residues, respectively. We show here that lacticin 481 synthetase can convert the Thr analogs ()-3-EtSer, ()-3-vinylSer, ()-3-ethynylSer, and ()-3-[()-propenyl]Ser into the corresponding dehydro amino acids when incorporated into its peptide substrate.

View Article and Find Full Text PDF

[reaction: see text] Fluorinated amino acids are useful building blocks for the preparation of biologically active peptides and peptidomimetics with increased metabolic stability. We report here the synthesis of two fluorinated amino acids, beta-difluoroalanine and gamma-difluorothreonine, as analogues of Ser and Thr, respectively. These compounds were suitably protected for Fmoc-based solid-phase peptide synthesis.

View Article and Find Full Text PDF

This Perspective provides an overview of the progress in two of the original programs in my research group focused on the biosynthesis of the antibiotics nisin, lacticin 481, fosfomycin, and bialaphos. The path from start-up funds to tenure and beyond offers insights into the opportunities realized and missed along the road.

View Article and Find Full Text PDF

Many antibiotics target the assembly of the cell wall of eubacteria, a netlike 3D structure composed of layers of peptidoglycan (PG). Very little is known about how the lipid precursor of PG, lipid II, is inserted into the existing cell wall in a growing and dividing cell. A new study provides a powerful tool for investigating this insertion process and opens the door to understanding the mechanism of eubacterial cell wall biogenesis.

View Article and Find Full Text PDF

Fosfomycin is a clinically utilized, highly effective antibiotic, which is active against methicillin- and vancomycin-resistant pathogens. Here we report the cloning and characterization of a complete fosfomycin biosynthetic cluster from Streptomyces fradiae and heterologous production of fosfomycin in S. lividans.

View Article and Find Full Text PDF

Lantibiotics are ribosomally synthesized peptides that undergo posttranslational modifications to their mature, antimicrobial form. They are characterized by the unique amino acids lanthionine and methyllanthionine, introduced by means of dehydration of Ser/Thr residues followed by reaction of the resulting dehydro amino acids with cysteines to form thioether linkages. Two-component lantibiotics use two peptides that are each posttranslationally modified to yield two functionally distinct products that act in synergy to provide bactericidal activity.

View Article and Find Full Text PDF

Lantibiotics are peptide antimicrobials containing the thioether-bridged amino acids lanthionine (Lan) and methyllanthionine (MeLan) and often the dehydrated residues dehydroalanine (Dha) and dehydrobutyrine (Dhb). While biologically advantageous, the incorporation of these residues into peptides is synthetically daunting, and their production in vivo is limited to peptides containing proteinogenic amino acids. The lacticin 481 synthetase LctM offers versatile control over the installation of dehydro amino acids and thioether rings into peptides.

View Article and Find Full Text PDF

Cytochrome c oxidase, the enzyme complex responsible for the four-electron reduction of O2 to H2O, contains an unusual histidine-tyrosine cross-link in its bimetallic heme a3-CuB active site. We have synthesised an unhindered, tripodal chelating ligand, BPAIP, containing the unusual ortho-imidazole-phenol linkage, which mimics the coordination environment of the CuB center. The ligand was used to investigate the physicochemical (pKa, oxidation potential) and coordination properties of the imidazole-phenol linkage when bound to a dication.

View Article and Find Full Text PDF