The Notch signaling pathway plays a major role in embryological development and in the ongoing life processes of many animals. Its role is to provide cell-to-cell communication in which a Sender cell, bearing membrane-embedded ligands, instructs a Receiver cell, bearing membrane-embedded receptors, to adopt one of two available fates. Elucidating the evolution of this pathway is the topic of this paper, which uses an orthologs approach, providing a comprehensive basis for the study.
View Article and Find Full Text PDFTunicate orthologs in the human genome comprise just 84 genes of the 19,872 protein-coding genes and 23 of the 16,528 non-coding genes, yet they stand at the base of the Olfactores clade, which radiated to generate thousands of tunicate and vertebrate species. What were the powerful drivers among these genes that enabled this process? Many of these orthologs are present in gene families. We discuss the biological role of each family and the orthologs' quantitative contribution to the family.
View Article and Find Full Text PDFBLAST searches against the human genome showed that of the 93 keratin-associated proteins (KRTAPs) of Homo sapiens, 53 can be linked by sequence similarity to an H. sapiens metallothionein and 16 others can be linked similarly to occludin, while the remaining KRTAPs can themselves be linked to one or other of those 69 directly-linked proteins. The metallothionein-linked KRTAPs comprise the high-sulphur and ultrahigh-sulphur KRTAPs and are larger than the occludin-linked set, which includes the tyrosine- and glycine-containing KRTAPs.
View Article and Find Full Text PDFBackground: The present availability of full genome sequences of a broad range of animal species across the whole range of evolutionary history enables one to ask questions as to the distribution of genes across the chromosomes. Do newly recruited genes, as new clades emerge, distribute at random or at non-random locations?
Results: We extracted values for the ages of the human genes and for their current chromosome locations, from published sources. A quantitative analysis showed that the distribution of newly-added genes among and within the chromosomes appears to be increasingly non-random if one observes animals along the evolutionary series from the precursors of the tetrapoda through to the great apes, whereas the oldest genes are randomly distributed.
Drug development in oncology usually establishes efficacy in metastatic disease before advancing a therapy to the adjuvant or neoadjuvant settings. Unfortunately, too often use in adjuvant or neoadjuvant settings fails to improve overall survival. Reasons for the modest benefits include the fact that in many cases surgery cures a majority of patients making it difficult to demonstrate gains.
View Article and Find Full Text PDFFollowing Liebeskind et al [1], we have attempted to find consensus ages for the protein-coding and the noncoding genes of the human genome, using publicly-available ortholog databases. For each database separately, we determined its age estimate for the genes it listed, determining this by identifying the earliest ortholog for the gene in question. We assigned these ages to 1 of the 19 major phylostrata defined by Domazet-Loso and Tautz [2], 2 of which were further subdivided.
View Article and Find Full Text PDFIn the accompanying manuscript (Litman and Stein, 2018) we list the ages of all the protein-coding genes and of many of the noncoding genes of the human genome. The present manuscript uses those results to derive the ages of the genes on the COSMIC list of somatic mutations in cancer. The lymphoma-associated genes in the COSMIC list are younger than the sarcoma-associated or the carcinoma-associated genes, or the genes shared by lymphomas and carcinomas.
View Article and Find Full Text PDFThe chloroquine resistance transporter of the human malaria parasite , PfCRT, is an important determinant of resistance to several quinoline and quinoline-like antimalarial drugs. PfCRT also plays an essential role in the physiology of the parasite during development inside erythrocytes. However, the function of this transporter besides its role in drug resistance is still unclear.
View Article and Find Full Text PDFBackground: We applied mathematical models to clinical trial data available at Project Data Sphere LLC (Cary, NC, USA), a non-profit universal access data-sharing warehouse. Our aim was to assess the rates of cancer growth and regression using the comparator groups of eight randomised clinical trials that enrolled patients with metastatic castration-resistant prostate cancer.
Methods: In this retrospective analysis, we used data from eight randomised clinical trials with metastatic castration-resistant prostate cancer to estimate the growth (g) and regression (d) rates of disease burden over time.
Mutations in the "chloroquine resistance transporter" (PfCRT) are a major determinant of drug resistance in the malaria parasite Plasmodium falciparum. We have previously shown that mutant PfCRT transports the antimalarial drug chloroquine away from its target, whereas the wild-type form of PfCRT does not. However, little is understood about the transport of other drugs via PfCRT or the mechanism by which PfCRT recognizes different substrates.
View Article and Find Full Text PDFSuccessful cancer treatments are generally defined as those that decrease tumor quantity. In many cases, this decrease occurs exponentially, with deviations from a strict exponential being attributed to a growing fraction of drug-resistant cells. Deviations from an exponential decrease in tumor quantity can also be expected if drugs have a nonuniform spatial distribution inside the tumor, for example, because of interstitial pressure inside the tumor.
View Article and Find Full Text PDFRomidepsin and vorinostat are histone deacetylase inhibitors (HDACis) that have activity in T-cell lymphomas, but have not gained traction in solid tumors. To gain deeper insight into mechanisms of HDACi efficacy, we systematically surveyed 19 cell lines with different molecular phenotypes, comparing romidepsin and vorinostat at equipotent doses. Acetylation at H3K9 and H4K8 along with 22 other histone lysine acetylation and methylation modifications were measured by reverse phase proteomics array (RPPA), and compared with growth inhibition (IC50), and cell cycle arrest.
View Article and Find Full Text PDFThe emerging resistance to quinine jeopardizes the efficacy of a drug that has been used in the treatment of malaria for several centuries. To identify factors contributing to differential quinine responses in the human malaria parasite Plasmodium falciparum, we have conducted comparative quantitative trait locus analyses on the susceptibility to quinine and also its stereoisomer quinidine, and on the initial and steady-state intracellular drug accumulation levels in the F1 progeny of a genetic cross. These data, together with genetic screens of field isolates and laboratory strains associated differential quinine and quinidine responses with mutated pfcrt, a segment on chromosome 13, and a novel candidate gene, termed MAL7P1.
View Article and Find Full Text PDFBackground: The US FDA and the EMA have approved seven agents for the treatment of renal cell carcinoma, primarily based on differences in progression-free survival (PFS). Because PFS is an arbitrary endpoint we hypothesized that an analysis would demonstrate the growth rate of tumors remained constant at the time of RECIST-defined disease progression.
Methods: We previously estimated the growth (g) and regression (d) rates and the stability of g using data from the Phase III trial comparing sunitinib and interferon.
Mutations in the chloroquine resistance transporter (PfCRT) are the primary determinant of chloroquine (CQ) resistance in the malaria parasite Plasmodium falciparum. A number of distinct PfCRT haplotypes, containing between 4 and 10 mutations, have given rise to CQ resistance in different parts of the world. Here we present a detailed molecular analysis of the number of mutations (and the order of addition) required to confer CQ transport activity upon the PfCRT as well as a kinetic characterization of diverse forms of PfCRT.
View Article and Find Full Text PDFPreclinical studies have suggested that sunitinib accelerates metastases in animals, ascribing this to inhibition of the vascular endothelial growth factor receptor or the tumor's adaptation. To address whether sunitinib accelerates tumors in humans, we analyzed data from the pivotal randomized phase III trial comparing sunitinib and interferon alfa in patients with metastatic renal cell carcinoma. The evidence clearly shows that sunitinib was not harmful, did not accelerate tumor growth, and did not shorten survival.
View Article and Find Full Text PDFPurpose: We applied a method that analyzes tumor response, quantifying the rates of tumor growth (g) and regression (d), using tumor measurements obtained while patients receive therapy. We used data from the phase III trial comparing sunitinib and IFN-α in metastatic renal cell carcinoma (mRCC) patients.
Methods: The analysis used an equation that extracts d and g.
Resistance to quinoline antimalarial drugs has emerged in different parts of the world and involves sets of discrete mutational changes in pfcrt and pfmdr1 in the human malaria parasite Plasmodium falciparum. To better understand how the different polymorphic haplotypes of pfmdr1 and pfcrt contribute to drug resistance, we have conducted a linkage analysis in the F1 progeny of a genetic cross where we assess both the susceptibility and the amount of accumulation of chloroquine, amodiaquine, quinine and quinidine. Our data show that the different pfcrt and pfmdr1 haplotypes confer drug-specific responses which, depending on the drug, may affect drug accumulation or susceptibility or both.
View Article and Find Full Text PDFPurpose: In solid tumors such as prostate cancer, novel paradigms are needed to assess therapeutic efficacy. We utilized a method estimating tumor growth and regression rate constants from serial PSA measurements, and assessed its potential in patients with metastatic castration resistant prostate carcinoma (mCRPC).
Experimental Design: Patients were enrolled in five phase II studies, including an experimental vaccine trial, representing the evolution of therapy in mCRPC.
Antimicrob Agents Chemother
January 2011
The emergence of artemisinin-resistant Plasmodium falciparum malaria jeopardizes efforts to control this infectious disease. To identify factors contributing to reduced artemisinin susceptibility, we have employed a classical genetic approach by analyzing artemisinin responses in the F1 progeny of a genetic cross. Our data show that reduced artemisinin susceptibility is a multifactorial trait, with pfmdr1 and two additional loci (on chromosomes 12 and 13) contributing to it.
View Article and Find Full Text PDFDrug resistance represents a major obstacle in the radical control of malaria. Drug resistance can arise in many different ways, but recent developments highlight the importance of mutations in transporter molecules as being major contributors to drug resistance in the human malaria parasite Plasmodium falciparum. While approximately 2.
View Article and Find Full Text PDFIn solid tumors, where curative therapies still elude oncologists, novel paradigms are needed to assess the efficacy of new therapies and those already approved. We used radiologic measurements obtained in patients with metastatic renal cell carcinoma enrolled in a phase II study of the epothilone B analog, ixabepilone (Ixempra), to address this issue. Using a novel 2-phase mathematical equation, we used the radiologic measurements to estimate the concomitant rates of tumor regression and growth (regression and growth rate constants).
View Article and Find Full Text PDFVirulence and drug resistance are traits that pathogens can acquire independently, albeit these traits can influence each other. A recent publication has reported on the co-evolution of virulence and pyrimethamine resistance in malaria parasites. Here, we discuss this finding in the context of the folate biosynthesis pathway and explain how mutational changes in this pathway can affect both parasite replication rates and the development of drug resistance.
View Article and Find Full Text PDFPurpose: The slow progress in developing new cancer therapies can be attributed in part to the long time spent in clinical development. To hasten development, new paradigms especially applicable to patients with metastatic disease are needed.
Patients And Methods: We present a new method to predict survival using tumor measurement data gathered while a patient with cancer is receiving therapy in a clinical trial.
Background: To hasten cancer drug development, new paradigms are needed to assess therapeutic efficacy. In a randomized phase II study in patients with renal cell carcinoma, 10 microg/kg bevacizumab (Avastin; Genentech, Inc., South San Francisco, CA) administered every 2 weeks resulted in a longer time to progression but a statistically significant difference in overall survival could not be demonstrated.
View Article and Find Full Text PDF