Publications by authors named "Wilfred Ip"

The bipartite transcription factor β-catenin (β-cat)/T cell factor (TCF), formed by free β-cat and a given TCF family member, serves as the effector of the developmental Wnt signaling cascade. β-cat/TCFs also serve as effectors of certain peptide hormones or growth factors during adulthood. We reported that liver-specific expression of dominant-negative Transcription factor 7 like 2 (TCF7L2DN) led to impaired glucose disposal.

View Article and Find Full Text PDF

Psoriasis is a common chronic inflammatory skin disease that manifests as scaly erythematous plaques as a consequence of keratinocyte hyperproliferation and inflammation. It is commonly associated with diabetes, obesity, and the metabolic syndrome. While there are numerous approved treatment options available, they have limitations including availability, toxicities such as immunosuppression, and high cost.

View Article and Find Full Text PDF

Objective: Disruption of TCF7L2 in mouse pancreatic β-cells has generated different outcomes in several investigations. Here we aim to clarify role of β-cell TCF7L2 and Wnt signaling using a functional-knockdown approach.

Methods: Adenovirus-mediated dominant negative TCF7L2 (TCF7L2DN) expression was conducted in Ins-1 cells.

View Article and Find Full Text PDF

Investigations on the metabolic role of the Wnt signaling pathway and hepatic transcription factor 7-like 2 (TCF7L2) have generated opposing views. While some studies demonstrated a repressive effect of TCF7L2 on hepatic gluconeogenesis, a recent study using liver-specific Tcf7l2(-/-) mice suggested the opposite. As a consequence of redundant and bidirectional actions of transcription factor (TCF) molecules and other complexities of the Wnt pathway, knockout of a single Wnt pathway component may not effectively reveal a complete metabolic picture of this pathway.

View Article and Find Full Text PDF

p21-activated protein kinase-1 (Pak1) plays a role in insulin secretion and glucagon-like peptide-1 (GLP-1) production. Pak1(-/-) mice were found to carry a defect in ip pyruvate tolerance test (IPPTT), leading us to speculate whether Pak1 represses hepatic gluconeogenesis. We show here that the defect in IPPTT became more severe in aged Pak1(-/-) mice.

View Article and Find Full Text PDF

Certain "degradation" products of GLP-1 were found to possess beneficial effects on metabolic homeostasis. Here, we investigated the function of the COOH-terminal fragment of GLP-1, the nonapeptide GLP-1(28-36)amide, in hepatic glucose metabolism. C57BL/6 mice fed a high-fat diet (HFD) for 13 wk were injected intraperitoneally with GLP-1(28-36)amide for 6 wk.

View Article and Find Full Text PDF

Recent studies have demonstrated that the COOH-terminal fragment of the incretin hormone glucagon-like peptide-1 (GLP-1), a nonapeptide GLP-1(28-36)amide, attenuates diabetes and hepatic steatosis in diet-induced obese mice. However, the effect of this nonapeptide in pancreatic β-cells remains largely unknown. Here, we show that in a streptozotocin-induced mouse diabetes model, GLP-1(28-36)amide improved glucose disposal and increased pancreatic β-cell mass and β-cell proliferation.

View Article and Find Full Text PDF

Certain single nucleotide polymorphisms (SNPs) in transcription factor 7-like 2 (TCF7L2) are strongly associated with the risk of type 2 diabetes. TCF7L2 and β-catenin (β-cat) form the bipartite transcription factor cat/TCF in stimulating Wnt target gene expression. cat/TCF may also mediate the effect of other signaling cascades, including that of cAMP and insulin in cell-type specific manners.

View Article and Find Full Text PDF

The type 2 diabetes risk gene TCF7L2 is the effector of the Wnt signaling pathway. We found previously that in gut endocrine L-cell lines, TCF7L2 controls transcription of the proglucagon gene (gcg), which encodes the incretin hormone glucagon-like peptide-1 (GLP-1). Whereas peripheral GLP-1 stimulates insulin secretion, brain GLP-1 controls energy homeostasis through yet-to-be defined mechanisms.

View Article and Find Full Text PDF

Glucose metabolism is tightly controlled by multiple hormones and neurotransmitters in response to nutritional, environmental, and emotional changes. In addition to insulin and glucagon produced by pancreatic islets, two incretin hormones, namely glucagon-like peptide-1 (GLP-1) and gastric inhibitory polypeptide (GIP, also known as glucose-dependent insulinotropic peptide), also play important roles in blood glucose homeostasis. The incretin hormones mainly exert their regulatory effects via their corresponding receptors, which are expressed in pancreatic islets as well as many other extra-pancreatic organs.

View Article and Find Full Text PDF

The Wnt signaling pathway was initially discovered for its role in tumorigenesis and the development of Drosophila and other eukaryotic organisms. The key effector of this pathway, the bipartite transcription factor β-cat/TCF, is formed by free β-catenin (β-cat) and a TCF protein, including TCF7L2. Extensive recent investigations have highlighted the role of the Wnt signaling pathway in metabolic homeostasis and its implication in diabetes and other metabolic diseases.

View Article and Find Full Text PDF

Protein transmenembrane (TM) segments participating in helix-helix packing commonly contain small residue patterns (termed GG4 or "small-xxx-small" motifs) at i and i + 4 positions. Within many TM segments - such as the glycophorin A (GpA) sequence L75IxxGVxxGVxxT87- the G17y-xxx-Gly83 motif often occurs in combination with large, usually beta3-branched aliphatic residues at adjacent positions, typified here by Val30 and Val84 residues. To explore the importance of local P-branched character on GpA dimerization, we made systematic replacements to all 16 combinations of single or double Ile, Leu, and AIa residues at GpA TM Val/Val positions 80 and 84.

View Article and Find Full Text PDF