Pertechnetate ion [Tc(VII)O(4) (-)] reduction rate was determined in core samples from a shallow sandy aquifer located on the US Atlantic Coastal Plain. The aquifer is generally low in dissolved O(2) (<1 mg L(-1)) and composed of weakly indurated late Pleistocene sediments differing markedly in physicochemical properties. Thermodynamic calculations, X-ray absorption spectroscopy and statistical analyses were used to establish the dominant reduction mechanisms, constraints on Tc solubility, and the oxidation state, and speciation of sediment reduction products.
View Article and Find Full Text PDFTo help provide a fundamental basis for use of microbial dissimilatory reduction processes in separating or immobilizing (99)Tc in waste or groundwaters, the effects of electron donor and the presence of the bicarbonate ion on the rate and extent of pertechnetate ion [Tc(VII)O(4)(-)] enzymatic reduction by the subsurface metal-reducing bacterium Shewanella putrefaciens CN32 were determined, and the forms of aqueous and solid-phase reduction products were evaluated through a combination of high-resolution transmission electron microscopy, X-ray absorption spectroscopy, and thermodynamic calculations. When H(2) served as the electron donor, dissolved Tc(VII) was rapidly reduced to amorphous Tc(IV) hydrous oxide, which was largely associated with the cell in unbuffered 0. 85% NaCl and with extracellular particulates (0.
View Article and Find Full Text PDFThe comparative behavior of sulfur (S) and technetium (Tc) in soybean seedlings shows gross subcellular distributions to be similar for these oxyanions. More than 75% of the tissue-deposited Tc remains soluble and extractable. Differences in Tc fixation/incorporation were noted for the nuclear and chloroplast fractions of leaf and root cells.
View Article and Find Full Text PDFThe xylem exudates of soybean (Glycine max cv Williams), provided with fixed N, were characterized as to their organic constituents and in vivo and in vitro complexation of plutonium, iron, cadmium, and nickel. Ion exchange fractionation of whole exudates into their compound classes (organic acid, neutral, amino acid, and polyphosphate), followed by thinlayer electrophoresis, permitted evaluation of the types of ligands which stabilize each element. The polyvalent elements plutonium(IV) and iron(III) are found primarily as organic acid complexes, while the divalent elements nickel(II) and cadmium(II) are associated primarily with components of the amino acid/peptide fraction.
View Article and Find Full Text PDFA chronic feeding study using 95mTc incorporated into alfalfa and an acute study where 95mTc was amended to alfalfa showed that about 8.4% of ingested Tc was transferred to eggs. After 10 days of chronic feeding, 80% of the Tc was in yolk, 20% in albumin and less than 1% in shell and associated membranes.
View Article and Find Full Text PDFThe absorption characteristics and mechanisms of pertechnetate (TcO(4) (-)) uptake by hydroponically grown soybean seedlings (Glycine max cv Williams) were determined. Absorption from 10 micromolar solutions was linear for at least 6 hours, with 30% of the absorbed TcO(4) (-) being transferred to the shoot. Evaluation of concentration-dependent absorption rates from solutions containing 0.
View Article and Find Full Text PDFThe absorption characteristics of Cd(2+) by 10- to 12-day-old soybean plants (Glycine max cv Williams) were investigated with respect to influence of Cd concentration on adsorption to root surfaces, root absorption, transport kinetics and interaction with the nutrient cations Cu(2+), Fe(2+), Mn(2+), and Zn(2+). The fraction of nonexchangeable Cd bound to roots remained relatively constant at 20 to 25% of the absorbed fraction at solution concentration of 0.0025 to 0.
View Article and Find Full Text PDFMetabolic and physiological processes play important roles in regulating the transfer and behavior of trace elements in the soil/plant/animal system. The behaviors of Ni, Cd, Cr, T1, Np, Pu and Tc are used to illustrate important aspects of these processes. Microbial metabolism has both indirect and direct effects on trace element solubility in soils.
View Article and Find Full Text PDFAs a first phase in an investigation of the role of the soil microflora in Pu complex formation and solubilization in soil, the effects of Pu concentration, form, and specific activity on microbial types, colony-forming units, and CO(2) evolution rate were determined in soils amended with C and N sources to optimize microbial activity. The effects of Pu differed with organism type and incubation time. After 30 days of incubation, aerobic sporeforming and anaerobic bacteria were significantly affected by soil Pu levels as low as 1 mug/g when Pu was added as the hydrolyzable Pu(NO(3))(4) (solubility, <0.
View Article and Find Full Text PDFAppl Environ Microbiol
November 1981
The losses of benzoic acid and a homologous series of both mono- and dibasic aliphatic acids in oil shale retort water were monitored with time (21 days) in liquid culture (4% retort water, vol/vol) inoculated with soil. The organic acids constituted approximately 12% of the dissolved organic carbon in retort water, which served as the sole source of carbon and energy in these studies. The levels of the acids in solution were reduced by 80 to 90% within 9 days of incubation.
View Article and Find Full Text PDFThe distribution and chemical behavior of Cd(2+) in tissues and its chemical form in xylem water of soybean plants (cv. Williams) were investigated. Following root absorption, Cd is strongly retained by roots, with only 2% of the accumulated Cd being transported to leaves; as much as 8% was transported to seeds during seed filling.
View Article and Find Full Text PDFJ Agric Food Chem
February 1982
Environ Health Perspect
December 1978
The use of plants to monitor heavy metal pollution in the terrestrial environment must be based on a cognizance of the complicated, integrated effects of pollutant source and soil-plant variables. To be detectable in plants, pollutant sources must significantly increase the plant available metal concentration in soil. The major factor governing metal availability to plants in soils is the solubility of the metal associated with the solid phase, since in order for root uptake to occur, a soluble species must exist adjacent to the root membrane for some finite period.
View Article and Find Full Text PDFThe gross tissue distribution, intracellular fate, and chemical behavior of Ni(2+) in soybean plants (Glycine max cv. Williams) were investigated. Following root absorption, Ni was highly mobile in the plant, with leaves being the major sink in the shoots for Ni during vegetative growth.
View Article and Find Full Text PDFThe absorption of Ni(2+) by 21-day-old soybean plants (Glycine max cv. Williams) was investigated with respect to its concentration dependence, transport kinetics, and interactions with various nutrient cations. Nickel absorption, measured as a function of concentration (0.
View Article and Find Full Text PDF