Publications by authors named "Wilczynski G"

Nuclear speckles, also known as interchromatin granule clusters (IGCs), are subnuclear domains highly enriched in proteins involved in transcription and mRNA metabolism and, until recently, have been regarded primarily as their storage and modification hubs. However, several recent studies on non-neuronal cell types indicate that nuclear speckles may directly contribute to gene expression as some of the active genes have been shown to associate with these structures. Neuronal activity is one of the key transcriptional regulators and may lead to the rearrangement of some nuclear bodies.

View Article and Find Full Text PDF

Aims: Epilepsy is one of the most common chronic neurological disorders, affecting around 50 million people worldwide, but its underlying cellular and molecular events are not fully understood. The Golgi is a highly dynamic cellular organelle and can be fragmented into ministacks under both physiological and pathological conditions. This phenomenon has also been observed in several neurodegenerative disorders; however, the structure of the Golgi apparatus (GA) in human patients suffering from epilepsy has not been described so far.

View Article and Find Full Text PDF

Background: Epilepsy affects millions of people worldwide, yet we still lack a successful treatment for all epileptic patients. Most of the available drugs modulate neuronal activity. Astrocytes, the most abundant cells in the brain, may constitute alternative drug targets.

View Article and Find Full Text PDF
Article Synopsis
  • - Spatial chromatin organization is essential for how genes are regulated in neurons, especially since these cells can change their gene expression when stimulated.
  • - Neuronal stimulation triggers the condensation of large chromatin domains quickly and reversibly, relying on energy and calcium pathways, but not on active transcription.
  • - The process involves changes in histone modifications and the spatial arrangement of chromosomes, with histone deacetylase HDAC1 playing a crucial role in this chromatin reorganization, affecting transcriptional regulation.
View Article and Find Full Text PDF

Kainate receptors (KARs) are key regulators of synaptic circuits by acting at pre- and postsynaptic sites through either ionotropic or metabotropic actions. KARs can be activated by kainate, a potent neurotoxin, which induces acute convulsions. Here, we report that the acute convulsive effect of kainate mostly depends on GluK2/GluK5 containing KARs.

View Article and Find Full Text PDF

The Brain-Derived Neurotrophic Factor is one of the most important trophic proteins in the brain. The role of this growth factor in neuronal plasticity, in health and disease, has been extensively studied. However, mechanisms of epigenetic regulation of Bdnf gene expression in epilepsy are still elusive.

View Article and Find Full Text PDF

We present in-vivo imaging of the mouse brain using custom made Gaussian beam optical coherence microscopy (OCM) with 800nm wavelength. We applied new instrumentation to longitudinal imaging of the glioblastoma (GBM) tumor microvasculature in the mouse brain. We have introduced new morphometric biomarkers that enable quantitative analysis of the development of GBM.

View Article and Find Full Text PDF
Article Synopsis
  • * Bortezomib, originally approved for refractory MM, is now widely used in combination therapies for newly diagnosed patients, as well as for maintenance and relapsed cases.
  • * Despite its effectiveness, bortezomib can cause serious side effects, particularly peripheral neuropathy and myelosuppression, but also cardiac and muscle toxicities, which have not been as well-studied; the review highlights these issues and includes preliminary research on its effects on skeletal muscle in mice.
View Article and Find Full Text PDF

Entosis is a phenomenon, in which one cell enters a second one. New clinico-histopathological studies of entosis prompted us to summarize its significance in cancer. It appears that entosis might be a novel, independent prognostic predictor factor in cancer histopathology.

View Article and Find Full Text PDF

The lysine acetyltransferases type 3 (KAT3) family members CBP and p300 are important transcriptional co-activators, but their specific functions in adult post-mitotic neurons remain unclear. Here, we show that the combined elimination of both proteins in forebrain excitatory neurons of adult mice resulted in a rapidly progressing neurological phenotype associated with severe ataxia, dendritic retraction and reduced electrical activity. At the molecular level, we observed the downregulation of neuronal genes, as well as decreased H3K27 acetylation and pro-neural transcription factor binding at the promoters and enhancers of canonical neuronal genes.

View Article and Find Full Text PDF

The human genome is extensively folded into 3-dimensional organization. However, the detailed 3D chromatin folding structures have not been fully visualized due to the lack of robust and ultra-resolution imaging capability. Here, we report the development of an electron microscopy method that combines serial block-face scanning electron microscopy with in situ hybridization (3D-EMISH) to visualize 3D chromatin folding at targeted genomic regions with ultra-resolution (5 × 5 × 30 nm in xyz dimensions) that is superior to the current super-resolution by fluorescence light microscopy.

View Article and Find Full Text PDF
Article Synopsis
  • The Polish Respiratory Society has created guidelines for diagnosing and treating idiopathic pulmonary fibrosis (IPF), based on input from experts and current literature.
  • It includes 28 recommendations covering diagnosis, pharmacological treatment, and non-pharmacological/palliative care approaches.
  • The guidelines emphasize avoiding surgical lung biopsy in specific cases, recommend antifibrotic medications regardless of functional impairment, and advocate for pulmonary rehabilitation and other support therapies for IPF patients.
View Article and Find Full Text PDF

We used a new multimodal imaging system that combines optical coherence microscopy and brightfield microscopy. Using this brain monitoring approach and cranial window implantation, we three-dimensionally visualized the vascular network during thrombosis, with high temporal (18 s) and spatial (axial, ; lateral, ) resolution. We used a modified mouse model of photochemical thromboembolic stroke in order to more accurately parallel human stroke.

View Article and Find Full Text PDF

The detailed architectural examination of the neuronal nuclei in any brain region, using confocal microscopy, requires quantification of fluorescent signals in three-dimensional stacks of confocal images. An essential prerequisite to any quantification is the segmentation of the nuclei which are typically tightly packed in the tissue, the extreme being the hippocampal dentate gyrus (DG), in which nuclei frequently appear to overlap due to limitations in microscope resolution. Segmentation in DG is a challenging task due to the presence of a significant amount of image artifacts and densely packed nuclei.

View Article and Find Full Text PDF

To date, neurons have been the primary focus of research on the role of glucocorticoids in the regulation of brain function and pathological behaviors, such as addiction. Astrocytes, which are also glucocorticoid-responsive, have been recently implicated in the development of drug abuse, albeit through as yet undefined mechanisms. Here, using a spectrum of tools (whole-transcriptome profiling, viral-mediated RNA interference in vitro and in vivo, behavioral pharmacology and electrophysiology), we demonstrate that astrocytes in the nucleus accumbens (NAc) are an important locus of glucocorticoid receptor (GR)-dependent transcriptional changes that regulate rewarding effects of morphine.

View Article and Find Full Text PDF

Introduction: The main component of extralysosomal proteolysis is the ubiquitin-proteasome system (UPS), which is supplemented by tripeptidyl peptidase II (TPPII). That system is a target for anticancer strategies by using proteasome inhibitors. Data from several studies on leukemic cells share evidence for the beneficial and potential role of TPPII in cell survivability.

View Article and Find Full Text PDF

Extralysosomal proteolysis is a multistep process involving the Ubiquitin- Proteasome System (UPS) and supplementary peptidases. Tripeptidyl peptidase II (TPPII) is the most extensively characterized enzyme, supplementing and sometimes substituting for proteasomal functions. In response to proteasome inhibition, polyubiquitinated proteins acting as proteasome substrates aggregate with proteasomes and form aggresomes.

View Article and Find Full Text PDF

Background: Although advanced heart failure (HF) is a clinically documented risk factor for vascular cognitive impairment, the occurrence and pathomechanisms of vascular cognitive impairment in early stages of HF are equivocal. Here, we characterize vascular cognitive impairment in the early stages of HF development and assess whether cerebral hypoperfusion or prothrombotic conditions are involved.

Methods And Results: Tgαq*44 mice with slowly developing isolated HF triggered by cardiomyocyte-specific overexpression of G-αq*44 protein were studied before the end-stage HF, at the ages of 3, 6, and 10 months: before left ventricle dysfunction; at the stage of early left ventricle diastolic dysfunction (with preserved ejection fraction); and left ventricle diastolic/systolic dysfunction, respectively.

View Article and Find Full Text PDF

Differentiation of progenitor cells into adipocytes is accompanied by remarkable changes in cell morphology, cytoskeletal organization, and gene expression profile. Mature adipocytes are filled with a large lipid droplet and the nucleus tends to move to the cell periphery. It was hypothesized that the differentiation process is also associated with changes of nuclear organization.

View Article and Find Full Text PDF

Nanostructures as color-tunable luminescent markers have become major, promising tools for bioimaging and biosensing. In this paper separated molybdate/GdO doped rare earth ions (erbium, Er and ytterbium, Yb) core-shell nanoparticles (NPs), were fabricated by a one-step homogeneous precipitation process. Emission properties were studied by cathodo- and photoluminescence.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers synthesized water-soluble upconversion nanoparticles (UCNPs) using a PVP coating on NaYF:Er,Yb,Gd, which showed high upconversion efficiencies and varying Gd ion concentrations.
  • The internalization and cytotoxicity of these UCNPs were tested on HeLa, HEK293, and astrocyte cell lines, revealing no cytotoxic effects even at high concentrations (up to 50 μg/ml).
  • The study identified that UCNPs are primarily taken up by cells through clathrin-mediated endocytosis and are secreted via lysosomal exocytosis, demonstrating their co-localization in specific organelles within the cells for the first time.
View Article and Find Full Text PDF
Article Synopsis
  • Multiple myeloma (MM) is a type of cancer that makes up about 13% of blood-related cancers and is often treated with bortezomib, which can cause neurological side effects.
  • A case study highlighted a patient who developed reversible metabolic myopathy due to bortezomib, showing symptoms of muscle weakness, particularly in the legs, and this was linked to lipid and mitochondrial abnormalities.
  • In a study of 24 MM patients treated with bortezomib, 7 showed similar muscular symptoms, suggesting that monitoring for muscle issues is crucial, and stopping bortezomib can lead to recovery.
View Article and Find Full Text PDF

Rewiring of synaptic circuitry pertinent to memory formation has been associated with morphological changes in dendritic spines and with extracellular matrix (ECM) remodeling. Here, we mechanistically link these processes by uncovering a signaling pathway involving the serotonin 5-HT7 receptor (5-HT7R), matrix metalloproteinase 9 (MMP-9), the hyaluronan receptor CD44, and the small GTPase Cdc42. We highlight a physical interaction between 5-HT7R and CD44 (identified as an MMP-9 substrate in neurons) and find that 5-HT7R stimulation increases local MMP-9 activity, triggering dendritic spine remodeling, synaptic pruning, and impairment of long-term potentiation (LTP).

View Article and Find Full Text PDF

Activity-regulatedcytoskeleton-associated protein (Arc) protein is implicated as a master regulator of long-term forms of synaptic plasticity and memory formation, but the mechanisms controlling Arc protein function are little known. Post-translation modification by small ubiquitin-like modifier (SUMO) proteins has emerged as a major mechanism for regulating protein-protein interactions and function. We first show in cell lines that ectopically expressed Arc undergoes mono-SUMOylation.

View Article and Find Full Text PDF