Publications by authors named "Wilbur Channels"

Recent reports show that, after nuclear envelope breakdown, lamin-B, a component of the nuclear lamina in interphase, localizes around the mitotic spindle as a membranous network. How this process occurs, however, and how it influences mitotic spindle morphogenesis is unclear. Here, we develop a computational model based on a continuum description to represent the abundance and location of various molecular species involved during mitosis, and use the model to test a number of hypotheses regarding the formation of the mitotic matrix.

View Article and Find Full Text PDF

Lamin B is a component of the membranous spindle matrix isolated from Xenopus egg extracts, and it is required for proper spindle morphogenesis. Besides lamin B, the spindle matrix contains spindle assembly factors (SAFs) such as Eg5 and dynein which are known to regulate microtubule organization and SAFs known to promote microtubule assembly such as Maskin and XMAP215. Because lamin B does not bind directly to microtubules, it must affect spindle morphogenesis indirectly by influencing the function of spindle matrix-associated SAFs.

View Article and Find Full Text PDF

The mitotic spindle plays an essential role in chromosome segregation during cell division. Spindle formation and proper function require that microtubules with opposite polarity overlap and interact. Previous computational simulations have demonstrated that these antiparallel interactions could be created by complexes combining plus- and minus-end-directed motors.

View Article and Find Full Text PDF